University of North Carolina Highway Safety Research Center e-archives

bicycles alcohol impairment access child passenger safety crashes data driver distraction crosswalks driver behavior engineering evaluation graduated drivers licensing highways injury prevention medians occupant protection motor vehicles older drivers pedestrians public health research roadway design safety school travel seat belts sidewalks transportation walking traffic

Dutt, A.K., and Reinfurt, D.W. (1979). The Effect of Using a "Towaway" Threshold in Studying Traffic Accidents. Chapel Hill, NC: University of North Carolina Highway Safety Research Center.

> Scanned and uploaded on August 14, 2009

This report is an electronically scanned facsimile reproduced from a manuscript contained in the HSRC archives.

hig		ay
Sal	ety eai	rch
Cer	nte	r

university of north carolina

chapel hill, n.c.

THE EFFECT OF USING A 'TOWAWAY' THRESHOLD IN STUDYING TRAFFIC ACCIDENTS

> Amitabh K. Dutt Donald W. Reinfurt

September 30, 1979 UNC/HSRC- 79/9/1

Contract No. DOT-HS-4-00897

THE EFFECT OF USING A 'TOWAWAY' THRESHOLD IN STUDYING TRAFFIC ACCIDENTS

Amitabh K. Dutt Donald W. Reinfurt

FINAL REPORT October 1, 1977 - December 31, 1978

Prepared for

DEPARTMENT OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION Washington, D.C. 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DOT-HS-4-00897. This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle The Effect of Using	 Report Date September 30, 1979 Performing Organization Code 	
Studying Traffic Ad	8. Performing Organization Report No.	
7. Author(s) Amitabh K. Dutt & I		
9. Performing Organization Name The Highway Safety		10. Work Unit No. (TRAIS)
University of North Chapel Hill, North	n Carolina	 11. Contract or Grant No. DOT-HS-4-00897 13. Type of Report and Period Covered
400 Seventh Street	sportation raffic Safety Admin.	Final Report Oct. 1, 1977 - Dec. 31, 1978 14. Sponsoring Agency Code
Washington, D.C. 2 15. Supplementary Notes	.0590	
		report are those of the authors way Traffic Safety Administration.
Study (NCSS) utilized their samples. It is	a "towaway" threshold for i also going to be the major	EP) and the National Crash Severity nclusion of accident vehicles in criterion for much of the National the effect of using such a
The Restraint Sys Study (NCSS) utilized their samples. It is Accident Sampling Syst threshold rather than In the first part associated with post-o sources, 1976 North Ca examined. The variabl the two files were ver Carolina data and preo variables presented. drivable in high speed greater depending on t In the second par seat belt usage and et criterion. For the ac	a "towaway" threshold for it also going to be the major cem (NASS). In this report "all accidents" is investig tof the report, the indeper trash vehicle drivability are arolina accident data and 19 es identified in single vehic ty comparable. A log-linear dicted towaway odds as a fur For example, the odds of be and for the report, accident a fectiveness estimates are a cident characteristics (i.e	nclusion of accident vehicles in criterion for much of the National the effect of using such a
The Restraint Sys Study (NCSS) utilized their samples. It is Accident Sampling Syst threshold rather than In the first part associated with post-o sources, 1976 North Ca examined. The variabl the two files were ver Carolina data and preo variables presented. drivable in high speed greater depending on t In the second par seat belt usage and et criterion. For the ac accident type; vehicle	a "towaway" threshold for it also going to be the major cem (NASS). In this report "all accidents" is investig tof the report, the indeper trash vehicle drivability are arolina accident data and 19 es identified in single vehic to comparable. A log-linear dicted towaway odds as a fur For example, the odds of be and the report, accident a fectiveness estimates are of cident characteristics (i.e impact site) the towaway w	nclusion of accident vehicles in criterion for much of the National the effect of using such a ated. dent variables which are most closely e identified. Two different data 75 New York accident data, were icle and multi-vehicle accidents in model was fitted to the North ction of the identified independent ing towed versus the vehicle being le crashes are from four to ten-fold nd injury characteristics along with ompared as a function of the sampling ., rural-urban area; highway class; s. all accidents distributions are (Con't on following page)
The Restraint Sys Study (NCSS) utilized their samples. It is Accident Sampling Syst threshold rather than In the first part associated with post-o sources, 1976 North Ca examined. The variabl the two files were ver Carolina data and preo variables presented. drivable in high speed greater depending on t In the second par seat belt usage and et criterion. For the ac	a "towaway" threshold for it also going to be the major cem (NASS). In this report "all accidents" is investig to of the report, the indeper- trash vehicle drivability and the object drivability and the sidentified in single vehic to comparable. A log-linear licted towaway odds as a fur For example, the odds of be the object struck. To of the report, accident a fectiveness estimates are of the characteristics (i.e. the impact site) the towaway we are impact site) the towaway we the object struck is a further towaway we are struck in the towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further towaway we have a further tow	nclusion of accident vehicles in criterion for much of the National the effect of using such a ated. dent variables which are most closely e identified. Two different data 75 New York accident data, were icle and multi-vehicle accidents in model was fitted to the North ction of the identified independent ing towed versus the vehicle being le crashes are from four to ten-fold nd injury characteristics along with ompared as a function of the sampling ., rural-urban area; highway class; s. all accidents distributions are
The Restraint Sys Study (NCSS) utilized their samples. It is Accident Sampling Syst threshold rather than In the first part associated with post-of sources, 1976 North Ca examined. The variabl the two files were ver Carolina data and preof variables presented. drivable in high speed greater depending on to In the second par seat belt usage and eff criterion. For the ac accident type; vehicle 17. Key Words Towaway Independent variabl Odds ratio Injury, restraint u	a "towaway" threshold for it also going to be the major em (NASS). In this report "all accidents" is investig to f the report, the indeper trash vehicle drivability are arolina accident data and 19 es identified in single vehic to comparable. A log-linear licted towaway odds as a fur For example, the odds of be the object struck. To f the report, accident a fectiveness estimates are of cident characteristics (i.e impact site) the towaway we have a size of the towaway we are a size of the towaway we are a size of the towaway we are a size of the towaway we are a size of the towaway we are a size of the towaway we are a size of the towaway we are a	nclusion of accident vehicles in criterion for much of the National the effect of using such a ated. dent variables which are most closely e identified. Two different data 75 New York accident data, were icle and multi-vehicle accidents in model was fitted to the North ction of the identified independent ing towed versus the vehicle being le crashes are from four to ten-fold nd injury characteristics along with ompared as a function of the sampling ., rural-urban area; highway class; s. all accidents distributions are (Con't on following page) bution Statement lable to the Public

16. ABSTRACT (Con't)

virtually identical for serious (A+K) vehicle severity accidents. This is the case since only 1.5 percent of the fatals (K) and 4.6 percent of the serious (A+K) crashes are excluded from the towaway sampling frame (i.e., appear in the drivable sample). Contrarily, when comparing towaway versus all accidents without regard to vehicle severity, the distributions differ markedly with a preponderance of rural accidents, ran off road accidents, and frontal impacts in the towaway sample. Serious (A+K) driver injury rates are from two to three-fold greater in the towaway sample with the difference decreasing as car size decreases. On the other hand, belt usage rates and corresponding effectiveness estimates are consistently lower for the towaway sample. The magnitude of these differences by car size, model year, and/or driver injury level is given in Table 4.7 and 4.8.

TABLE OF CONTENTS

Cha pt er		Page
	ACKNOWLEDGEMENTS	ii
Ι	INTRODUCTION	1
II	THE DATA	3
	Data Sources	3 3 8
III	ANALYSIS: PROCEDURES AND RESULTS	11
	Variables of Interest	11 11 20 24
IV	EFFECT OF TOWAWAY CRITERION ON SOME IMPORTANT COMPARISONS	29
	Vehicle Comparisons	29 31
۷	SUMMARY AND CONCLUSIONS	41
	LIST OF REFERENCES	45
	APPENDIX A. Variables of Interest from 1976 North Carolina Accident Data	A-1
	B. Variables of Interest from 1975 New York Accident Data	B -1
	C. Fitted Frequencies for Multi-Vehicle Accidents (20% 1976 North Carolina)	C-1
	D. HSRC Vehicle Make and Size Groups	D-1

ACKNOWLEDGEMENTS

The authors wish to acknowledge the many individuals and organizations whose contributions made this report possible. In particular, appreciation is expressed to the North Carolina Division of Motor Vehicles and the New York State Traffic Records Section for providing the data for this study.

Special thanks are due members of the HSRC staff for their contribution to the project. In particular, Ms. Anita Leung for her programming efforts, Ms. Jane Markley for her contribution in the initial phases of the project, and Ms. Carol Carroll and Ms. Jane Stutts for their help in the final phases of report preparation. Appreciation is also expressed to typists Ms. Peggy James and Ms. Teresa Parks, and to artist Ms. Cranine Brinkhous.

Finally, the authors are greatly indebted to Mr. Donald F. Mela, the Contract Technical Manager, for his helpful guidance through all phases of the project.

I. INTRODUCTION

7

The National Highway Traffic Safety Administration (NHTSA) collects statistical data on accidents for use in developing, evaluating and implementing vehicle and highway safety standards. Specifically, NHTSA will be depending on the National Accident Sampling System (NASS) established by the National Center for Statistics and Analysis (NCSA) to collect this data. Under the National Accident Sampling System (NASS), relatively thorough investigations are being carried out on a probability sample of towaway traffic accidents, where towaway means non-drivable.

Because NASS relies on the "towaway" criterion for the inclusion of an accident into its sample, NHTSA is interested in investigating the possible biases which may be introduced by this procedure. For example, one would like to know if rural accidents are over-represented in the towaway crashes or if driver characteristics are different in a NASS-type file from the overall accident population. Unfortunately, very little work has been done to answer such questions, even though several studies (Reinfurt, Silva and Seila, 1976; Scott, Flora and Marsh, 1976) have been carried out using the Restraint Systems Evaluation Program (RSEP) data, which is a prototype of NASS.

Accordingly, the purpose of this study is to investigate the possible effects of biases in a data base restricted to towaway accidents. This requires an accident file containing both towaway and non-towaway accidents, along with information on vehicle drivability. The 1976 North Carolina and 1975 New York accident files meet these criteria, and were therefore selected for use in the analysis.

The remainder of this report discusses the data sources utilized in this study, the analysis procedure employed, the principal findings, and implications of these findings. More specifically, Chapter II describes both the North Carolina and New York data sources in greater detail and the procedures followed in setting up the final working files. Chapter III presents the analysis procedures and results. In Chapter IV, some accident characteristics, injury rates, belt usage rates and belt effectiveness measures are examined and comparisons made as a function of sampling criterion. Finally, Chapter V summarizes the study findings and their implications.

It should be noted that the results could be compared across states with New York representing a more urban state than North Carolina. The reporting threshold for North Carolina accidents is any motor vehicle collision resulting in injury or death or total property damage of at least two hundred dollars. New York State requires all accidents causing death, personal injury or damage over two hundred dollars to the property of any one person to be reported. The New York police, however, restrict their investigations to injury and high property damage accidents only. The remaining less severe accidents are reported by motorists themselves. Thus, there is more between-reporting-source variation in the New York data.

II. THE DATA

Data Sources

Although many states have towaway information on their accident forms, only a few have stored this data on their computerized accident tapes. The 1976 North Carolina accident tapes contain towaway information for all reportable 1976 motor vehicle accidents in North Carolina (see Appendix A). Similarly, the State of New York has collected and computerized towaway information on its revised 1975 accident report form. The latter data was made available to the Highway Safety Research Center by the New York Department of Motor Vehicles and provides an excellent complement to the North Carolina data set.

The New York accident form specifically indicates if the vehicle was towed from the scene while the North Carolina form indicates vehicle drivability. Although there may be cases where the distinction in the two criteria could make a difference, in this report they are considered equivalent and are used interchangeably.

Data Editing

While the North Carolina 1976 accident data had already been converted into an SPSS-usable format, the New York data involved a considerable amount of processing before it could be used for data analysis. Figures 2.1 and 2.2 show 1975 New York police and motorist accident report forms, respectively.

The police accident form in New York consists of two sheets. The first sheet is used as a template and overlaid within the bold-lined boundary on the second sheet. The cells along the edges of the second sheet are filled from the corresponding items on the template. Once this has been done, the template is removed and the data items within the bold outline on the second sheet are filled in.

The purpose of the motorist report form is to cover non-injury accidents thus restricting its use to non-serious accidents. Data editing problems arose because the 1975 New York accident tape contained data from both types of forms. As may be seen, the motorist report forms do not contain information on some important variables. For example, the motorist form has no information on apparent contributing factors, point of impact, occupant injury by seat location, usage of safety equipment or location of first event. Unfortunately, even for data items provided on the motorist report form, a substantial proportion were left blank. -4-

Figure 2.1 New York police accident report form.

Figure 2.1 (Con't)

-5-

SECTION A

-6-

An accident in New York State causing death, personal injury or damage over \$200 to the property of any one person must be reported within 10 days. Failure to report within 10 days is a misdemeanor and subjects License and/or Registration to suspension until report is filed.

INSTRUCTIONS

PLEASE PRINT OR TYPE ALL INFORMATION USE BLACK OR DARK BLUE INK

Begin by folding along this line **and follow** the instructions at the top of Section B.

1. If you were involved in an accident with a pedestrian, enter the pedestrian information in the DRIVER block of the space provided for other Vehicle No. 2, and print "PEDESTRIAN" in the OWNER block.

If you were involved in an accident with a vehicle other than a motor vehicle, e.g., snowmobile, mini-bike, aircycle, all-terrain vehicle, trail bike or other non-motor vehicle, enter the driver, owner and vehicle information as you would normally for Other Vehicle No. 2.

If a vehicle is unoccupied, enter all available information. Be sure to enter the correct vehicle plate number and vehicle type in the appropriate VEHICLE block.

2. Driver information must be entered exactly as it appears on each driver's license.

Owner information must be entered exactly as it appears on the Registration of each vehicle involved in the accident.

- 3. If you were involved in an accident in which there were more than two vehicles, an additional one of these report forms must be filled out. On that form, place the information for the third vehicle in the space marked "Your Vehicle No. 1" and mark it No. 3. Use the space marked "Other Vehicle No. 2" for the fourth vehicle, and mark it No. 4 and so on.
- 4. The location of the accident is very important and you should describe it as accurately as possible in the space provided. In addition, if the accident occurred on a State highway, you will find a small green sign, called a Reference Marker, somewhere near the crash site. They are posted each 10th of a mile along the highway. The reference marker section should include the number exactly as it appears on the sign.
- 5. For each person injured in the accident, describe his injuries and check the injury code K, A, B, or C, that applies. When a Pedestrian is injured, place a "P" in the box labeled "In Vehicle Number". Injuries are defined as follows:

K Any injury that results in death.

Severe lacerations, broken or distorted limbs, skull fracture, crushed chest, internal injuries, unconscious when taken from the accident scene, unable to leave accident scene without assistance.

Α

C

B Lump on head, abrasions, minor lacerations.

Momentary unconsciousness, limping, nausea, hysteria, complaint of pain (no visible injury).

If there are more than four persons injured, another one of these report forms is needed. In the injury section of that report, record the required information for all additional injured persons.

6. Attach any additional report forms to page one. Each page of the report must be numbered in the upper left corner, dated and signed on the bottom line and submitted to:

COMMISSIONER OF MOTOR VEHICLES THE SOUTH MALL ALBANY, NEW YORK 12228 SECTION B

State of New York - Department of Motor Vehicles

REPORT OF MOTOR VEHICLE ACCIDENT

BE SURE FORM IS FOLDED ALONG THIS LINE BEFORE ANSWERING THE QUESTIONS BELOW.

FILL IN THE 9 BOXES TO THE RIGHT BY ENTERING THE NUMBER OF THE ITEM WHICH BEST DESCRIBES THE CIRCUMSTANCES OF THE ACCIDENT.

IF A QUESTION DOES NOT APPLY ENTER A DASH (-).

IF AN ANSWER IS UNKNOWN ENTER AN "X".

	IC CONTROL	
 None Traffic Signal Stop Sign Flashing Light Yield Sign 	 Officer/Flagman/Guard No Passing Zone R Crossing Sign RR Crossing Flashing Light RR Crossing Gates Other 	/
ROADWA	20. Other	-L
1. Straight and Level 2. Straight and Grade 3. Straight at Hillcrest	4. Curve and Level 5. Curve and Grade 6. Curve at Hiltcrest	/
	IRFACE CONDITION	-[``
1. Dry 2. Wet 3. Muddy	4. Snow/Ice 5. Slush 10. Other	/
WI	EATHER	
1. Clear 2. Cloudy 3. Rain	4. Snow 5. Sleet/Hail/Freezing Rain 6. Fog/Smog/Smoke 10. Other	/
DIRECTIO	ON OF TRAVEL	-L'
$W \begin{pmatrix} N \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	1. North 2. Northeast 3. East 4. Southeast 5. South 6. Southwest 7. West 8. Northwest	Your Vehicle No. 1 Vehicle No. 2
ACTION OF VEHIC	LES BEFORE ACCIDENT	-[
1. Going Straight Ahead 2. Making Right Turn 3. Making Left Turn 4. Making U Turn 5. Starting from Parking 6. Starting in Traffic 7. Slowing or Stopping 8. Stopped in Traffic	9. Entering Parked Position 10. Parked 11. Avoiding Object in Roadway 12. Changing Lanes 13. Overtaking 14. Merging 15. Backing 20. Other	Your Vehicle No. 1 Vehicle No. 2
τγρε ο	FACCIDENT	T
1 Other Material Materia	ISION WITH 4. Animal	
 Other Motor Vehicle Pedestrian Bicyclist 	5. Railroad Train 10. Other Object (Not Fixed)	
	ATH FIXED OBJECT	$\Box \Lambda$
	18, Fence 19, Bridge Structure	
11. Light Support/ Utility Pole 12. Guide Rail 13. Grash Cushion 14. Sign Post 15. Tree 16. Building/Wall 17. Curbing NON-	20. Culvert/Head Wall 21. Median/Barrier 22. Snow Embankment 23. Earth Embankment/ Rock Cul/Ditch 24. Fire hydrant 30. Other Fixed Object -COLLISION	

Figure 2.2 New York motorist-reported accident form.

REPORT.

STATE OF NEW YORK - DEPARTMENT OF MOTOR VEHICLES REPORT OF MOTOR VEHICLE ACCIDENT

Page____Pages HAVE YOU READ THE INSTRUCTIONS IN SECTION A ON THE BACK?

7

1

Your ACCIDENT DATE DAY OF Vehicle VO. / DAY YEAR			LEI SCI	GATE ACCIDEN						Other Vehicle No. 2
AOTORIST IDENTIFICATION NUMBER 244211		INDLE INITIAL		LAST NAME OF ORIVER	<u>I I I I I</u>	1_1				ENSE
			D R I	NUMBER AND STREET	-	<u></u>				
ITY STATE		ZIP CODE	V E R	CITY	STATE		·			ZIP CODE
ATE OF BIRTH SEX STATE OF LI	ICENSE			DATE OF BIRTH	STATE OF L	CENS	E			
O. DAY YEAR	NAME N	HODLE INITIAL	0	MO. DAY YEAR	PIRSY	NAME			Ņ	IDDLE INITIAL
IMBER AND STREET			Ŵ N E	NUMBER AND STREET	· · · · · · · · · · · · · · · · · · ·					
TY STATE		ZIP CODE	R	CITY	STATE					ZIP CODE
NO. OF PLATE NUMBER	VEHICLE TYPE	VEH. TOWED AWAYT DYESDNO	V E	NO. OF PLATE DECUPANTS	NUMBER	VEH	CLE	TYPE		VEH. TOWED AWAYT DYESDNO
STIMATED COST OF REPAIRS 1\$50 OR LESS \$\$1.\$200 \$201-\$250 \$\$251-\$300 \$\$301-\$750 Dover \$750	VEHICLE YEAR & MA	RE STATE OF	H •	ESTIMATED COST OF RE \$50 OR LESS \$51-5 \$251-5300 \$301-	200 0\$201-\$250		CLE	YEAR	& MAI	E STATE OF REG.
ADEQUATE THE ACCI YOUR OWN	лис нісят тонк 	<u>ACCIDENT</u>			SER THE VEHICLES R VEHICLE IS NO. 1 LANDMARKS AT SCI ROUTE NO. OR ST OF					
NJURY SECTION: FILL OUT SPACE NAME	IN VEHICLE 12. 1	Y PERSON INJ	UR 8	DOR KILLED IN THE DESCRIBE INJURIES	ACCIDENT.	INSTI 16. K	A	ON 5	ON BA	N(5) SEE CK DATE OF DEATH
				<u>.</u>						
CEIDENT				· · · · · · · · · · · · · · · · · · ·		······				
ENTIFY DAWAGED PROPERTY: THER THAN VFHICLE(S) ANG OF INS. JAANGE GOMPANY HIGH ISSUED POLICY ME AND ADDRESS OF DLICYMOLDER VEHICLE WAS OFFRATED UNCER	NA	ME AND ADDRESS	5		POLICY NUMPER POLICY PERIOD	FRC	Эм			
TANIT OF ICE ON NYS DOT GIVE NO. FOUN 57-23 (FLEET COVIE/ACE) NELE WITS THE COMMISSIONTH? ATE FILED SIGNATURE OF UNIVER OF	IF SELF-INSURE GIVE CENTIFICA	3 TE NO.		AND STATE Y PERSON OTHER THAN C	RIVEN, GIVE READ	DN.				

MV-104 11/741 Thus, even though the police-reported cases tend to be more serious, the analysis of the New York data is necessarily limited to police-reported accidents.

Data Files

The 1976 North Carolina accident tape had over 286,000 vehicle-oriented accident records. To facilitate data analysis a 20 percent sample of cases (N = 60,000) was selected from this tape. Furthermore, as the original accident record was 215 characters long and contained a number of variables that were not of interest in this study, for convenience, an extract was created from the 20 percent sample tape. Table 2.1 gives a listing of the variables included on the final North Carolina data file extract.

The 1975 New York accident tape contained over 600,000 vehicle-oriented accident records. Once again to facilitate data handling, a 25 percent sample (N 150,000) was created from this tape. This sample tape contained data from both police-reported and motorist-reported cases. As stated previously, because the motorist-reported cases lacked some important variables and also had significant portions blank, it was decided to consider only police-reported cases. Therefore, the extract tape that was created from this 25 percent sample contained over 78,000 police-reported cases. Since the vehicle-oriented record in the New York file was only 101 characters long, it was retained in its entirety (see Appendix B).

Table 2.1 Variables included on the 20 percent sample file of 1976 North Carolina accidents.

Variable Name

1.	Day of week
2.	
3.	Investigating agency
4.	
5.	
6.	Object struck
7.	Accident severity
8.	Accident type
9.	Initial point of contact
10.	Initial point of contact Roll-over
.	Vehicle maneuver
12.	Venicle defect
13.	Estimated speed prior to impact
14.	TAD ratingimpact site
15.	TAD rating-severity
16.	Amount of damage to vehicle
17.	Vehicle model year (officer reported)
18.	HSR vehicle size
19.	
20.	
	Total number of occupants
	Physical condition of driver
	Sobriety of driver
	Violation charged to driver
	Vehicle drivability
26.	Vehicle severity
27.	Injury class of driver
28.	Restraint of driver
29.	Race of driver
	Sex of driver
	Age of driver
	Means of involvement
	Region of impact
34.	Speed of accident

¹For a listing of the levels for those variables utilized in the analysis, see Appendix A.

III. ANALYSIS: PROCEDURES AND RESULTS

Variables of Interest

Table 3.1 lists the independent variables and their levels that were utilized in this analysis of the sample of 1976 North Carolina accidents. Appendix A shows the original format for these variables of interest on the sample tape. Some variables such as "accident type" were excluded from the list because the variable "means of involvement" was derived from accident type and included all of its information. Similarly, "initial point of contact" was replaced by "region of impact".

The variable levels were categorized by one of three methods. If the towaway, non-towaway percentages were similar for two levels in a given variable, then these levels were combined. A second basis for combining levels within a variable was low frequencies for some of the levels. Finally, some levels for a few variables were combined on an <u>a priori</u> basis; for example, the levels of the variable "investigating agency" were combined to form a dichotomous variable indicating accident location, rural or urban.

In addition to these independent variables, there is another set of variables which may be described as co-response variables. These variables (such as dollar damage to vehicle, TAD severity score, driver injury and vehicle severity) along with vehicle drivability are all "outcomes" or consequences of the accident. It is likewise of interest to study the relationship between these co-response variables and vehicle drivability. This is addressed in a later section of this chapter.

Appendix B shows the format for the vehicle-oriented New York accident data with only the variables of interest for this study included. For the New York file, the data was first partitioned into single vehicle accidents and multivehicle accidents and then appropriate variable levels were defined for each group. Table 3.2 shows the various levels for the two groups. These levels were combined on the same basis as the North Carolina data.

Variable Selection

One of the primary goals of this study was to determine which independent variables listed in Tables 3.1 and 3.2 most affected vehicle drivability resulting from a crash. Thus, for example, if it were determined that front-end impacts resulted in a higher proportion of towaway accidents, then an

			ľ	
1.	Day of Week		7.	Vehicle Maneuver*
	Values			Values
2.	1 1,2,3,4,5 2 6,7 Time of Day	weekday weekend		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 700- 959 2 1600-1759 3 2200-2359 0000-0159 4 1000-1559 5 0200-0659	morning rush evening rush late night mid day early morning and early evening	8.	7 10,13
3.	Investigating Ag	lency	9.	HSR Vehicle Size*
	1 2,3,4 2 1,5	Rural Urban		Initial Grouping Final Grouping
4.	Highway Class 1 1 2 2 3 3 4 4,5 6 6	Interstate U.S. N.C. Rural roads City street	10.	1 1,2 1,2 2 3 3,4 3 4 5 4 5 6,7,8,9 5 6,7,8,9 10,11 6 10 7 11 <u>Body Style</u> *
5.	Light Conditions 1 1 2 2 3 3 4 4 5 5 0 Line Character	Daylight Dusk Dawn Darkness - street lit Darkness - street unlit	11.	1 1,3 2 2 3 4,8,9 4 5,6 5 10,11,12,13 <u>Model Year</u>
6.	<u>Object Struck</u> * Initial Gr 1 1,2 2 3,4,9 3 5,6,8 4 7,10,12 5 11 6 13 7 14 8 15	rouping Final Grouping 1,2,11 3,4,9 5,6,8 7,10,12,14 13,15	12.	1 60-65 2 66-68 3 69-72 4 73-77 <u>Physical Condition</u> 1 1,2,3,4,5 Abnormal 2 6 Normal

Table 3.1 Independent or environmental variables of interest from the N.C. sample data and their levels.

*See Appendix A for descriptions of the variable levels.

		Table 3.1 (Cor	tinued).		
13.	Sobriety				
	Values			. 3	
	1 1 2 2,3	Not drinking Had been drinking			
14.	<u>Restraint of</u>	Driver			
	1 1 2 2,3,4	No belt Belt			
15.	Sex of Driver	-			
	1 1 2 2	Male Female			
16.	Age of Driver	-			
	5 16-20 6 21-30 7 31-60 8 61-97			:	
17.	Means of Invo	lvement			
	2 1,2,3 4 4,5 6 6 7 7	Single vehicle Two vehicles More than two vehicles Other			
18.	Region of Imp	act		•	
	1 1 2 2,3 4 4	Front Side Rear			
19.	Speed of Acci	dent			
	1 1 2 2 3 3	Low Medium High			
L					

		Single Vehi	cle Accidents		Multi-Vehicle Accidents			
1.	Hour		•	1.	Hour			
		Values	Description			Values	Description	
	1 2	1-7, 21-24 8-20	Late evening, dawn Other		1 2 3 4	23,24, 1-5 6-10 11-20 21,22	Late night, dawn Morning Evening Late evening	
2.	Land	Usage		2.	Land	Usage		
	1 2	1-5,7 6	Residential, industrial Agricultural		1 2	1-5,7 6	Residential, in- dustrial Agricultural	
3.	Weat	her		3.	Weath	ier		
	1 2 3 4	1 2 3 4,5,6	Clear Cloudy Rain Snow, sleet, hail		1 2 3 4	1 2 3 4,5,6	Clear Cloudy Rain Snow, sleet, hail	
4.	<u>Road</u>	Character		4.	Road	Character		
	1 2 3	1 2,3 4,5,6	Straight-level Straight-other Curved		1 2 3	1 2,3 4,5,6	Straight-level Straight-other Curved	
5.	Road	Surface Conc	lition	5. Road Surface Condition				
	1 2 3] 2,3 4,5	Dry Wet, muddy Snow, ice, sleet		1 2 3	1 2,3 4,5	Dry Wet, muddy Snow, ice, sleet	
6.	Туре	of Road Syst	<u>em</u> *	6.	Туре	of Road Syste	<u>em</u> *	
	1 2 3 4 5	1 2 3 4,9,10 5,6,7,8,11			1 2 3 4 5 6	1 2 3 4 5,6,7,8,11 9,10		
7.	Manne	er of Collisi	on	7.	Manne	er of Collisio	<u>on</u> *	
	Ind	adequate data			1 2 3 4 5 6 7	1,5,6 2 3 4 7 8 9		

Table 3.2 Independent or environmental variables of interest, from the 1975 N.Y. sample data and their levels.

*See Appendix B for descriptions of the variable levels.

-14-

Single Vehicle Accidents	Multi-Vehicle Accidents
8. Age of Driver	8. Age of Driver
Values	Values
1 1-29 2 30-76	1 1-29 2 30-59 3 60-76
9. Model Year	9. Model Year
1 pre-66 2 66-68 3 69-72 4 73-77	1 pre-66 2 66-68 3 69-72 4 73-79
10. Apparent Contributing Factors*	10. Apparent Contributing Factors*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
11. Pre-Accident Vehicle Action	11. Pre-Accident Vehicle Action*
1 1 Going straight 2 2-20 Other	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
12. Area of Impact	12. Area of Impact
1 10,20,80 Front 2 30,70 Side 3 40,50,60 Rear	1 10,20,80 Front 2 30,70 Side 3 40,50,60 Rear
13. Number Occupants	13. Number Occupants
1 1 2 2 3 3-98	1 1 2 2 3 3-98
14. <u>Restraint Use of Driver</u>	14. Restraint Use of Driver
1 1 No 2 2,3,4,5 Yes	1 1 No 2 2,3,4,5 Yes

Table 3.2 (Continued).

*See Appendix B for descriptions of the variable levels.

Multi-Vehicle Accidents
15. Total#of Injuries
Values
1 1 2 2 3 3-98
16. Second Event*
1 1-10 2 11-40

Table 3.2 (Continued).

*See Appendix B for descriptions of the variable levels.

overrepresentation of front-end impact accidents would be expected in the NASS files.

In this study, the procedure as described by Higgins and Koch, 1977 was used to determine the relative strengths of associations of the independent variables with the outcome measure, vehicle drivability. This procedure utilizes appropriately constructed Pearson Chi-square statistics divided by their degrees of freedom, which provides measures of the relative importance of certain combinations of variables in a multivariate relationship. The selection algorithm proceeds in the same spirit as forward stepwise regression.

More specifically, the first independent variable selected is the one having the largest Chi-square per degree of freedom with respect to its first order relationship with vehicle drivability. Table 3.3 shows the overall Chi-square, degrees of freedom and Chi-square per degree of freedom for each of the independent variables listed. These results indicate that speed of accident has the highest Chi-square per degree of freedom.

Before further variables were selected, the accidents were split into two groups, single vehicle accidents and multi-vehicle accidents. This was done because certain interim frequency tables showed that the towaway proportions were consistently higher for single vehicle accidents for all the independent variables in the study. This was true of both North Carolina and New York data.

Subsequent variables were selected by similar rules using the Chi-square per degree of freedom computed for the appropriate higher order contingency tables for the eligible <u>combined</u> set of variables (e.g., at the second stage, two-way tables with one dimension being the outcome variable and the other being all combinations of levels of the first variable chosen (speed) with those of a candidate second independent variable, say, day of week).

The procedure for both determining the significance of including a particular variable at a given stage and for terminating the selection of statistically important variables involves two types of statistics:

- (i) The Pearson Chi-square statistic for examining the relationship (two-way tables) of a specific variable with the dependent variable summed over <u>all possible combinations</u> of variables already selected with the sum then being divided by the sum of the degrees of freedom.
- (ii) A modified Mantel-Haenszel statistic which combines information with respect to the effect of a given variable on the outcome variable over all possible combinations of previously selected variables (see Stewart and Stutts, 1978, p. 25-28).

-17-

Table 3.3 Chi-squares for N.C. data; vehicle drivability by independent variable. (Source: 20% North Carolina data)							
Variable Name	x ²	D.F.	$\chi^2/D.F.$				
Day of week	271.85]	271.85				
Time of day	1550.46	4	387.62				
Rural/urban	1406.93	١	1406.93				
Highway class	1406.93	4	351.70				
Light condition	1986.87	4	496.72				
Object struck	4629.57	7	661.36				
Vehicle maneuver	3560.95	6	593.50				
Vehicle defect	475.40	1	475.40				
Vehicle size	656.77	6	109.50				
Body style	271.82	4	67.96				
Model year	164.16	3	54.72				
Physical condition	575.70	1	575.70				
Sobriety	2174.79	1	2174.79				
Restraint of driver	74.51	1	74.51				
Sex of driver	108.13	1	108.13				
Means of involvement	7012.29	4	1753.07				
Region of impact	2901.90	2	1450.95				
Speed of accident	5894.50	2	2947.25				
Age of driver	613.80	3	204.60				

In the preliminary selection process (i) was used, but, as the cell frequencies became smaller, (ii) was followed as the selection criteria. Although more complicated, an advantage of (ii) is that it also detects consistency in the relationships. The procedure was terminated when none of the variables not yet selected was significant according to (i) or (ii), as in forward stepwise regression. Table 3.4 summarizes the independent variables most closely associated with vehicle drivability for single vehicle and multi-vehicle accidents for the North Carolina data.

Table 3.4 Independent variables (listed in order of importance) affecting vehicle drivability for single and multivehicle accidents (North Carolina data).

Single Vehicle	Multi-Vehicle	
Speed of accident Region of impact Object struck	Speed of accident Region of impact Vehicle maneuver Vehicle size	

A similar analysis was carried out on the New York police-reported data to identify the variables most clearly related to vehicle drivability. Table 3.5 presents the results for single vehicle and multi-vehicle accidents.

Table 3.5 Independent variables (listed in order of importance) affecting vehicle drivability for single and multivehicle accidents (New York data).

Single Vehicle

Location of first event (on road/off road) Type of road system Area of impact Apparent contributing factor

Multi-Vehicle

Manner of collision Area of impact Type of road system Pre-accident vehicle action Driver age The variables in Tables 3.4 (North Carolina) and 3.5 (New York) are fairly similar for corresponding types of accidents. Thus, for example, the variable "type of road system" in Table 3.5 is basically a surrogate for speed of accident. Unfortunately, the New York data had no variable indicating vehicle size. In addition, Table 3.5 does not have object struck in single vehicle accidents because this variable was used to define such accidents for the New York data. That is, a single vehicle accident was defined by the number of vehicles involved being one and the type of accident being greater than ten, i.e., collision with fixed object (refer to Appendix B).

Analysis of Independent Variables

Once the variables of interest had been identified for each accident type, the data was set up as multi-way contingency tables and analyzed. The purpose of this analysis was to take into account the relationship between the various factors of the multi-way tables. The analysis was based on fitting a hierarchial log-linear model to the cell frequencies. These models were fit by an iterative proportional fitting algorithm developed by Haberman (1972).

The section on variable selection indicated that the variables of most interest for single vehicle accidents in the 1976 North Carolina data were vehicle drivability, speed of accident, region of impact and object struck. Table 3.6 shows the corresponding four-way table. A log-linear model was fit to this table using the Biomedical Computer Programs (BMDP, 1977). The three-way and higher level interactions were non-significant, and a model including all the two-way interactions was found adequate (likelihood ratio Chi-square of 59.7 with 52 degrees of freedom and p = 0.2). Table 3.7 shows the predicted values using this model.

A convenient way to summarize the information presented in Table 3.7 is to consider the odds ratio of a vehicle not being drivable: the ratio of the (fitted) number of vehicles towed away to the (fitted) number of vehicles that were not towed away. For example, in Table 3.7 the odds of being towed away when object struck is tree, utility pole, etc. for low speed, front impacts is 151.4/69.1 = 2.2. Thus, as expected, the odds of being towed is high for front-end high speed impacts regardless of the object struck, while the odds of being towed is low for almost all rear-end impacts. This implies that, for example, a sample based on towaway accidents will have an overrepresentation of front-end high speed impacts and an underrepresentation of virtually all rear-end impacts. when compared to a data base consisting of all reportable accidents.

-20-

Table 3.6	Frequencies of non-drivable	vs. drivable vehicles in single	vehicle accidents by object
	struck, accident speed, and	region of impact. (Source: 20%	1976 North Carolina data)

			Object Struck				
Impact Site	Accident Speed	Drivable	Tree, Utility Pole, Ditch Bank	Rollover	Fence, Guardrail in Median, Sign	Guardrail on Shoulder Bridge, Median or Curb	Underpass, Animal, Parked Veh. Other Obj.
Front	0-29	No Yes	157 78	12 3	14 13	20 8	28 23
	30-49	No Yes	850 168	43 16	110 46	108 29	132 48
	50+	No Yes	1131 123	63 5	131 39	126 22	145 26
Side	0-29	No Yes	32 40	16 14	6 9	6 5	7 23
	30-49	No Yes	252 115	65 23	34 38	36 17	29 34
	50+	No Yes	450 80	80 23	64 37	44 9	55 23
Rear	0-29	No Yes	4 7	2 3	1 4	3 0	2 7
	30-49	No Yes	27 16	3 3	3 6	5 4	3 8
	50+	No Yes	69 11	6 1	1 2	5 2	3 5

-21-

		of impact.	(Source: 20%	1976 North	Carolina data	a)	
					Object St	ruck	· · · · · · · · · · · · · · · · · · ·
Impact Site	Accident Speed	Drivable	Tree, Utility Pole, Ditch Bank	Rollover	Fence, Guardrail in Median, Sign	Guardrail on Shoulder, Bridge, Median or Curb	Underpass, Animal, Parked Veh., Cther Obj.
Front	0-29	No Yes (Odds Ratio)	151.4 69.1 (2.2)	12.9 6.6 (2.0)	14.4 16.4 (0.9)	19.3 11.0 (1.8)	30.7 29.3 (1.0)
	30-49	No Yes (Odds Ratio)	848.1 172.9 (4.9)	49.9 11.3 (4.4)	102.5 52.1 (2.0)	113.9 29.1 (3.9)	122.8 52.3 (2.3)
	50+	No Yes (Odds Ratio)	1151.2 117.3 (9.8)	57.8 6.6 (8.8)	136.1 34.6 (3.9)	126.5 16.2 (7.8)	140.1 29.8 (4.7)
Side	0-29	No Yes (Odds Ratio)	41.6 39.4 (1.1)	14.1 14.9 (0.9)	4.9 11.5 (0.4)	5.1 6.1 (0.8)	8.6 17.0 (0.5)
	30-49	No Yes (Odds Ratio)	254.3 107.7 (2.4)	59.4 28.0 (2.1)	37.8 39.9 (0.9)	32.9 17.5 (1.9)	37.4 33.1 (1.1)
	50+	No Yes (Odds Ratio)	436.7 92.4 (4.7)	87.1 20.5 (4.2)	63.5 33.5 (1.9)	46.2 12.3 (3.8)	54.0 23.9 (2.3)
Rear	0-29	No Yes (Odds Ratio)	8.6 11.0 (0.8)	1.9 2.6 (0.7)	0.7 2.2 (0.3)	1.3 2.2 (0.6)	2.0 5.4 (0.4)
	30-49	No Yes (Odds Ratio)	30.6 17.4 (1.6)	4.6 2.9 (1.6)	3.2 4.5 (0.7)	5.0 3.6 (1.4)	5.2 6.1 (0.9)
	50+	No Yes (Odds Ratio)	54.1 15.4 (3.5)	6.9 2.2 (3.1)	5.5 3.9 (1.4)	7.3 2.6 (2.8)	7.7 4.6 (1.7)

Table 3.7 Fitted frequencies and odds ratio for non-drivable vs. drivable vehicles in single vehicle accidents by object struck, accident speed, and region of impact. (Source: 20% 1976 North Carolina data)

17

A similar model fitting procedure was carried out for multi-vehicle accidents where the variables of interest were vehicle drivability, speed of accident, region of impact, vehicle maneuver and vehicle size. The fitted model included all two-way interactions and the three-way interactions involving all the variables mentioned above except vehicle size. For this model the likelihood ratio Chi-square was 481.4 with 480 degrees of freedom and p = 0.5. Appendix C shows the fitted frequencies. As mentioned earlier in the variable selection section, the towaway proportions and correspondingly the towaway odds were much lower for multi-vehicle accidents than for single vehicle accidents.

Table 3.8 presents the predicted towaway odds by speed, impact site, and vehicle size for the case where the cars were going straight ahead (vehicle maneuver = 3).

				Speed		
Impact Site	HSRC Vehicle Impact Site Size Group*		Low 0-29	Medium 30-49	High 50+	
Front	1 2 3 4	Lux., Med. Std., Int. Compact Sub-Compact	0.4 0.4 0.5 0.7	0.9 1.0 1.4 1.8	1.8 2.1 2.8 3.6	
Side	1 2 3 4	Lux., Med. Std., Int. Compact Sub-Compact	0.1 0.2 0.2 0.3	0.4 0.4 0.5 0.7	0.6 0.7 0.9 1.2	
Rear	1 2 3 4	Lux., Med. Std., Int. Compact Sub-Compact	0.1 0.1 0.2 0.2	0.2 0.2 0.3 0.4	0.4 0.5 0.7 0.9	

Table 3.8 Towaway odds for passenger cars by speed, impact site and vehicle size for multi-vehicle accidents with vehicles going straight ahead. (Source: 20% 1976 North Carolina data)

*See Appendix D for vehicle makes included in size groups.

This particular maneuver was selected because, for multi-vehicle accidents, more than half the sample fell in this category. Thus, for example, from Appendix C the towaway odds for front-end low speed impacts for luxury and medium-sized cars was 0.4 (=140.0/397.0).

Table 3.8 shows that, for all impact site and speed combinations, smaller vehicles have higher towaway odds. Similarly, for any given speed and car size, front-end impacts have higher towaway odds than side impacts which, in turn, have higher odds than rear-end impacts. Also, as expected, high speed impacts have higher towaway odds than low speed impacts.

Hence, in a sample based on towaway accidents involving more than one vehicle, one would expect to have an overrepresentation of front-end impacts, high speed impacts and also accidents involving smaller cars. Overrepresentation of small cars should especially be kept in mind when any accident rate comparisons are being made across different vehicle sizes from data based on towaway crashes only, such as will be done in NASS.

Analysis of Co-Response Variables

It was mentioned in an earlier section that, in addition to the independent variables examined thus far, there is a set of variables, each of which is a consequence of the accident. Variables such as driver injury, vehicle severity, TAD severity and vehicle dollar damage are included in this set of co-response variables. This section presents the results of an analysis which examines the relationships between these co-response variables and vehicle drivability.

Table 3.9 shows the levels of the co-response variables used in this study. It should be pointed out here that the variables, vehicle severity and driver

Variable	Level
Driver injury	l Not injured 2 Injured (K,A,B,C)
Vehicle severity	l Not injured 2 Injured
Vehicle dollar damage	1 0-199 2 200-599 3 600-1199 4 1200+
TAD severity score	1 TAD 1,2 2 TAD 3,4 3 TAD 5,6,7
Vehicle drivability	1 Towed 2 Not towed

Table 3.9 Co-response variables and their levels. (N.C. data)

injury, are very closely related since vehicle severity describes the worst occupant injury in the vehicle--including the driver.

To examine the relationships between the co-response variables, the Mantel-Haenszel procedure was used. Here the response variable was vehicle drivability and Mantel-Haenszel statistics were computed to measure the strength and consistency of the relationship between vehicle drivability and the co-response variables listed in Table 3.9. The results of the Mantel-Haenszel tests are presented in Table 3.10.

	proportions in N		
variable	es. (Source: 20%	1976 North Caro	lina data)
	•		·

Table 3.10 Mantel-Haenszel tests for consistency of differences in

Variable	M-H x ² (1 d.f.)
Damage Severity	
(1) TAD (1,2,3,4) vs. (5,6,7)	469.5
(2) TAD (1,2) vs. (3,4,5,6,7)	1162.8
Vehicle Dollar Damage	
(1) (0-199) vs. (200+)	1544.9
(2) (0-599) vs. (600+)	2385.8
Driver Injury	169.3
Vehicle Severity	118.1

The Mantel-Haenszel tests indicate that, even after controlling for each level of each of the remaining co-response variables, towaway accidents do appear to be associated with higher TAD scores, higher vehicle dollar damages, and higher percentages of driver injuries and vehicle occupant injuries than the non-towaway accidents. In addition, as Table 3.11 shows, the analysis indicates that there was a consistently lower proportion of vehicles towed away when the injury occurred to an occupant other than the driver.

A similar analysis was carried out on the New York data. Table 3.12 shows the co-response variables and the corresponding Mantel-Haenszel statistics. The three variables included here from the New York data were vehicle drivability, extent of vehicle damage, and driver injury. Once again, the Mantel-Haenszel tests indicated that towaway accidents do appear to be associated with a higher

Dollar Damage (\$)	TAD Severity	Driver Injury N (%)	Injury to Occupant Other Than Driver N (%)
0-199	1,2	110 (22.5)	12 (6.1)
	3,4	22 (71.0)	5 (62.5)
	5,6,7	13 (81.3)	1 (20.0)
200-599	1,2	540 (49.9)	138 (34.4)
	3,4	762 (74.0)	145 (52.4)
	5,6,7	241 (89.9)	32 (64.0)
600-1199	1,2	230 (76.7)	56 (65.9)
	3,4	1044 (88.5)	193 (74.5)
	5,6,7	876 (94.7)	120 (86.3)
1200+	1,2	106 (87.6)	9 (69.2)
	3,4	530 (94.8)	67 (88.2)
	5,6,7	1240 (98.1)	101 (97.1)

Table 3.11 Frequencies (percentages) of vehicles towed away by TAD severity and dollar damage (Source: 20% 1976 North Carolina data)

Table 3.12 Mantel-Haenszel tests for consistency of differences in towaway proportions in New York co-response variables.

Variables	· Levels		M-H x ² (1d.f.)
Extent of damage	(a)	1 None 2 Damaged or demolished	1220.6
	(b)	 None or light Moderate, severe or demolished 	4514.9
	(c)	 None, light, moderate Severe or demolished 	2396.3
Driver injury		l Injured 2 Not injured	5030.3

proportion of driver injury and more severe vehicle damage, even after controlling for each level of the co-response variables. In addition, Table 3.13 shows that the proportion of vehicles towed was higher for each level of vehicle damage when the driver was injured.

Table 3.13	Frequencies (percentages) of vehicles towed, by
	vehicle damage and driver injury (Source: 25%
	1975 New York police-reported accidents)

Vehicle Damage	Driver Injured N (%)	Driver Not Injured N (%)
None	31 (10.4)	62 (1.3)
Light	1649 (30.5)	2089 (11.1)
Moderate	6706 (54.4)	5072 (26.7)
Severe or Demolished	3291 (73.8)	1207 (49.7)

IV. EFFECT OF TOWAWAY CRITERION ON SOME IMPORTANT COMPARISONS

Chapter III presented the effect of some independent and co-response variables on whether or not a vehicle was drivable. For example, it was shown (Table 3.8) that in multi-vehicle accidents, for all impact site and speed combinations, smaller vehicles have higher towaway odds. Similarly Table 3.7 showed that in single vehicle accidents, the odds of being towed is high for front-end, high-speed impacts regardless of the object struck. This implied that in a data source based on a towaway reporting threshold, there would be an overrpresentation of front-end high speed impacts and an underrepresentation of almost all rear-end impacts. In this chapter the emphasis is on comparing accident and injury measures in a towaway data set with similar measures from a data source without such a threshold.

Vehicle Comparisons

Table 4.1 shows the distribution of accidents by area, vehicle severity (most severe injury to occupant of the vehicle) and sampling criterion. When vehicle severity is not controlled for, the percentage of rural accidents is higher (56.1 percent (towaway criterion) against 44.3 percent (no restriction)). For severe injuries (A+K), the distribution of vehicles is virtually identical

Vehicle Severity	Any + P.D.O.		(A+K)	
Sampling Criterion	Towaway All Acc.		Towaway	All Acc.
Area				
Urban	28502 (43.9)	105762 (55.7)	1279 (24.4)	1404 (25.3)
Rural	36488 (56.1)	84130 (44.3)	3971 (75.6)	4146 (74.7)

Table 4.1	Vehicle frequencies	(percentages)	by vehicle	severity, area
	and sampling criteri	on. (Source:	1976 North	Carolina data)

by area for the two sampling criteria. This is expected, since, as mentioned in Chapter III, given that there is a serious injury involved, it is highly likely that the vehicle reqired towing. Hence for serious injury accidents the two populations are nearly the same. Tables 4.2, 4.3 and 4.4 show the distribution by vehicle severity and sampling criterion by highway class, region of impact, and accident type, respectively. The three tables show that, while the distributions were quite different when vehicle severity was not controlled for, they are almost identical for serious injuries (A+K).

Vehicle Severity	Any +	P.D.O.	(A+I	K)
Sampling Criterion	Towaway	All Acc.	Towaway	All Acc.
Highway Class				
Interstate	1444	3643	152	158
	(2.3)	(2.0)	(2.9)	(2.9)
U.S.	11635	30616	1194	1240
	(18.2)	(17.0)	(22.8)	(22.4)
• N.C.	8803	20176	998	1038
	(13.8)	(11.2)	(19.0)	(18.7)
Rural Roads	17353	36880	1832	1924
	(27.1)	(20.5)	(34.9)	(34.7)
City Streets	24776	88504	1071	1186
	(38.7)	(49.2)	(20.4)	(21.4)

Table 4.2 Frequencies (percentages) by vehicle severity, highway class, and sampling criterion. (Source: 1976 North Carolina data)

Table 4.3 Frequencies (percentages) by vehicle severity, region of impact and sampling criterion. (Source: 1976 North Carolina data)

Vehicle Severity	Any + P.D.O.		(A+K	()
Sampling Criterion	Towaway	All Acc.	Towaway	All Acc.
Region of Impact				
Front	40193	88427	3336	3458
	(67.0)	(51.8)	(68.7)	(67.5)
Right Side	7179	23831	629	660
	(12.0)	(14.0)	(13.0)	(12.9)
Left Side	8239	28182	694	732
	(13.7)	(16.5)	(14.3)	(14.3)
Rear-end	4399	30356	198	270
	(7.3)	(17.8)	(4.1)	(5.3)

Vehicle Severity	Any +	P.D.O.	(A+I	<)
Sampling Criterion	Towaway	All Acc.	Towaway	All Acc.
Accident Type				
Ran off Road	18,660 (28.7)		2259 (43.0)	2335 (42.1)
Hit Fixed Object	589	935	52	56
	(0.9)	(0.5)	(1.0)	(1.0)
Hit Non-Fixed	608	984	35	
Object	(0.9)	(0.5)	(0.7)	
Car vs. Car	28,420	104,795	1669	1771
	(43.7)	(55.2)	(31.8)	(31.9)
Car vs. Truck	8638	33,747	686	733
	(13.3)	(17.8)	(13.1)	(13.2)
> 2 Vehicles	5472	15,138	389	425
Involved	(8.4)	(8.0)	(7.4)	(7.7)
Other Involvement	2603	11,213	160	176
	(4.0)	(5.9)	(3.0)	(3.2)

Table 4.4 Frequencies (percentages) by vehicle severity, accident type and sampling criterion. (Source: 1976 North Carolina data)

Thus, if the purpose of a given study was to determine the extent to which, say, a particular Federal Motor Vehicle Safety Standard (FMVSS) such as the side door beam standard, prevented serious injuries, restriction to towaway crashes would not produce serious biases. However, if the outcome measure was "any injury" or even "total accident-involved vehicles," relatively fewer would arise from an underrepresentation of city street accidents, rear-end crashes and/or car vs. car accidents in the towaway sample than in the population of all accidents.

Belt Usage and Injury Comparisons

Towaway accidents are in general more severe than non-towaway accidents. As a result, one would expect that a data source which includes only towaway vehicles in crashes would miss very few serious occupant injuries and would exclude many less severe and no injury cases. Table 4.5 confirms this and shows that a towaway data set is likely to miss only 1.5 percent of occupant fatalities as opposed to 64 percent when the injury threshold includes all levels (injured + not injured). As stated before this will be a problem if one is specifically interested in less severe accidents such as rear-end crashes or other low speed impact situations.

Vehicle Drivability	к	А	В	С	Not Injured	Total
No	794 (98.5)*	6192 (95.4)	17,708 (88.4)	15,723 (76.0)	65,086 (35.8)	105,503 (35.8)
Yes	12 (1.5)	325 (4.6)	2,903 (11.6)	9,498 (24.0)	176,753 (64.2)	189,491 (64.2)
Total	806	6517	20,611	25,221	241,839	294,994

Table 4.5. Occupant injury by vehicle drivability. (Source: 1976 North Carolina data)

*Percent with occupant injury <u>at least</u> as serious as given level. For example, for A, $95.4 = \frac{794 + 6192}{806 + 6517} \times 100$

Table 4.6 presents driver injury rates (per 1000 drivers) by model year, vehicle size and sampling criterion. As expected, for more serious injuries, the rates are approximately two to four fold higher in the towaway data set for each model year and vehicle size combination. Table 4.6 shows that, within each vehicle size group, both A + K rates (towaway and all accidents) decrease for newer model cars. In addition, Table 4.6 indicates that the serious injury rates are somewhat higher for smaller vehicles. For minor and moderate (R+C) injuries, the two rates differ generally by a factor of two while, as expected, for non-injury cases the relative rates are reversed with fewer drivers being uninjured in towaway crashes.

An important parameter often studied in injury analysis is restraint usage and subsequent effectiveness in reducing injuries. Table 4.7 shows the restraint usage rates calculated on a towaway basis and on an overall basis where essentially no threshold has been used. The restraint usage rates are consistently higher when all accidents are used. This is expected since a lack

	n fan - 11 - 11 - 11 - 11 - 11 - 11 - 11 -			Driver	Injury			
Vehicle Size	Model Year	Sampling Criterion	(A- N	+K) Rate	(B+0 N	C) Rate	(Nor N	ne) Rate
	1960-1965	Towaway All Acc.	97 100	63.7 24.7	490 656	321.9 161.7	935 3300	614.3 813.6
	1966-1968	Towaway All Acc.	161 166	53.5 18.5	997 1393	331.3 155.1	1851 7422	615.2 826.4
Luxury, Medium	1969-1972	Towaway All Acc.	245 266	52.9 17.0	1401 2070	302.5 132.3	2986 13312	644.6 850.7
	1973-1977	Towaway All Acc.	127 139	47.9 13.5	831 1376	313.2 134.0	1695 8754	638.9 852.5
	All Years	Towaway All Acc.	630 671	53.3 17.2	3719 5495	314.7 141.1	7467 32788	632.0 841.7
	1960-1965	Towaway All Acc.	465 489	85.2 38.5	1792 2328	328.5 183.5	3198 9868	586.3 778.0
Standard,	1966-1968	Towaway All Acc.	776 815	67.5 29.1	3643 4795	317.1 171.3	7072 22383	615.4 799.6
Intermediate	1969-1972	Towaway All Acc.	839 883	56.5 20.6	4668 6484	314.4 151.0	9342 35563	629.1 828.4
	1973-1977	Towaway All Acc.	525 554	59.3 17.2	2902 4587	327.8 142.4	5426 27066	612.9 840.4
	All Years	Towaway All Acc.	2605 2741	64.1 23.7	13005 18194	319.9 157.1	25038 94880	616.0 819.2
	1960-1965	Towaway All Acc.	168 174	87.0 43.2	627 806	324.7 200.2	1136 3046	588.3 756.6
Compact	1966-1968	Towaway All Acc.	264 272	76.3 36.8	1129 1422	326.5 192.4	2065 5696	597.2 770.8
	1969-1972	Towaway All Acc.	441 451	69.6 32.0	2051 2562	323.6 181.6	3847 11092	606.8 786.4
	1973-1977	Towaway All Acc.	303 314	63.4 24.4	1614 2281	337.7 177.4	2862 10262	598.9 798.2
•	All Years	Towaway All Acc.	1176 1211	71.2 31.6	5421 7071	328.4 184.2	9910 30096	600.4 784.2

Table 4.6 (Con't)

		Driver Injury						
Vehicle	Model	Sampling	•	+K)		(B+C)		ie)
Size	Year	Criterion	N	Rate	N	Rate	N	Rate
	1960-1965	Towaway	64	68.9	347	373.5	518	557.6
		All Acc.	70	40.8	420	244.8	1226	714.4
	1966-1968	Towaway	108	68.3	628	397.2	845	534.5
		All Acc.	114	39.0	740	253.2	2069	707.8
Sub-compact	1969-1972	Towaway	492	73.5	2335	348.7	3870	577.8
		All Acc.	505	35.6	2942	207.3	10744	757.1
	1973-1977	Towaway	686	73.0	3296	350.6	5418	576.4
		All Acc.	708	32.1	4294	194.6	17062	773.3
	All Years	Towaway	1350	72.6	6606	355.0	10651	572.4
	-	All Acc.	1397	34.2	8396	205.3	31101	760.5
	Overall	Towaway	5671	64.8	28751	328.3	53066	605.9
		All Acc.	6020	25.7	39156	167.3	188865	807.0

of restraint use would usually lead to a more severe injury, and as mentioned earlier the towaway data set is characterized by having a higher proportion of severe vehicle damage and corresponding driver injuries. Both (towaway and all accidents) restraint usage rates for lap and for lap and shoulder belts increase for newer model cars. Lap belt usage tends to decrease with decreasing car size except for sub-compacts whereas lap and shoulder belt use, if anything, increases with decreasing car size.

In summary, lap and lap and shoulder belt usage rates for drivers in all accidents are somewhat higher than those for the subset of drivers in towaway crashes where the belts would be more important due to the increased crash severity. But what about the corresponding injury-reducing effectiveness of belts in the two accident populations?

One of the most often examined measures in automobile injury analysis is belt effectiveness. Belt effectiveness is generally computed using the following expression:

((Proportion injured (Proportion injured) with <u>no</u> restraint) - <u>with</u> restraint)

(Proportion injured with no restraint

(4.1)

Belt Effectiveness =

-34-

Table 4.7 Driver restraint usage frequencies and rates (per 1000 drivers) by sampling criterion, model year and vehicle size. (Source: 1976 North Carolina data)

				Restrai	nt Usage			
Vehicle Size	Model Year	Sampling Criterion	L I N	ap Rate	Lap & St N	oulder Rate	Nor N	ne Rate
	1960-1965	Towaway All Acc.	47 138	30.9 33.3	03	 0.7	1503 4133	969.1 966.0
	1966-1968	Towaway All Acc.	124 465	40.2 49.7	4 24	1.3 2.8	2942 9004	958.5 947.5
Luxury, Medium	1969-1972	Towaway All Acc.	336 1396	70.4 85.2	35 131	7.3 8.0	4322 15,000	922.3 906.8
	1973-1977	Towaway All Acc.	295 1282	110.4 118.5	96 495	35.1 45.7	2312 9087	854.5 835.8
	All Years	Towaway All Acc.	802 3281	66.6 80.4	135 653	11.1 16.0	1079 27,224	922.3 903.6
ş	1960-1965	Towaway All Acc.	101 290	18.0 21.4	10 12	1.6 0.9	5448 12,989	980.4 977.7
- Standard,	1966-1968	Towaway All Acc.	364 1164	31.2 39.9	17 51	1.5 1.8	11,254 28,190	967.3 958.3
Intermediate	1969-1972	Towaway All Acc.	808 3045	53.8 67.5	70 232	4.5 5.1	14,215 42,177	941.7 927.4
	1973-1977	Towaway All Acc.	776 3274	86.4 96.8	395 1689	44.1 49.9	7784 29,005	869.5 853.3
	All Years	Towaway All Acc.	2049 7773	49.7 64.0	492 1984	11.9 16.3	38,701 112,361	938.4 919.7
	1960-1965	Towaway All Acc.	40 123	20.7 29.6	1 3	0.5 0.7	1922 4084	978.8 969.7
Compact	1966-1968	Towaway All Acc.	111 288	31.8 38.0	4 14	1.2 1.8	3405 7409	967.0 960.2
	1969-1972	Towaway All Acc.	319 896	50.0 60.9	39 78	5.8 5.0	6094 13893	944.2 934.1
	1973-1977	Towaway All Acc.	84 1171	79.7 88.4	170 599	35.8 45.3	4294 11744	884.5 866.3
•	All Years	Towaway All Acc.	854 2478	51.4 62.4	214 694	12.9 17.4	15715 37130	935.7 920.2

			Restraint Usage					
Vehicle Size	Model Year	Sampling Criterion	La N	np Rate	Lap & S N	Shoulder Rate	Non N	e Rate
	1960-1965	Towaway All Acc.	25 55	26.9 30.9	4 4	4.3 2.2	9 (5 1723	968.8 966.9
Cub convect	1966-1968	Towaway All Acc.	57 110	36.1 35.9	4 16	2.5 5.1	1544 2918	961.4 959.0
Sub-compact	1969-1972	Towaway All Acc.	422 1039	62.0 70.9	118 268	17.8 18.6	6267 13593	920.3 910.5
	1973-1977	Towaway All Acc.	829 2188	87.0 95.7	556 1421	58.4 62.5	8163 19448	854.6 841.9
	All Years	Towaway All Acc.	1333 3392	70.7 80.1	682 1709	36.3 40.6	16809 37607	893.0 879.3
	Overall	Towaway All Acc.	4671 16215	56.8 69.3	1503 4839	17.2 20.7	81104 212977	926.0 910.0

Table 4.8 shows belt effectiveness for the two sampling criteria for various combinations of model year, injury severity and vehicle size.

The effectiveness measures are rather consistently lower when a towaway sampling criterion is used. This is consistent with the hypothesis put forward by Campbell and Reinfurt (1979). Figure 4.1, which appears in this paper, shows belt effectiveness as a function of the cumulative injury distribution (X). From Table 4.5 the percentage of (A+K) injuries when no sampling criterion is used is 2.5 percent (= $\frac{806 + 6517}{294,994} \times 100$). The corresponding percentage for the towaway subset is 6.6.

Thus, if the hypothesized relationship holds, the belt effectiveness estimate from Figure 4.1 should shift from approximately 0.67 for the former case to 0.53 in the towaway subset. The corresponding values from Table 4.8, for an average size vehicle (standard and intermediate) for all model years combined are 0.66 and 0.56, respectively!

Table 4.8 shows that in general, both effectiveness measures (i.e., for towaway threshold and for all accidents) for serious injuries decrease with increasing car size and decrease for newer models within the same car size group. Thus, although there may be a difference in the effectiveness of Table 4.8 Belt effectiveness (lap or lap and shoulder) by model year, sampling criteria, driver injury and vehicle size. (Source: 1976 N.C. data)

Vehicle Size	Driver Injury	Sampling Criterion	'60-'65	'66-'68	'69 - '72	'73 - '77	All Years
Luxury	(A+K)	Towaway All Acc.	0.67 0.71	0.26 0.44	0.39 0.52	0.33 0.43	0.39 0.52
Medium	Any Injury	Towaway All Acc.	0.35 0.39	-0.15 0.05	0.17 0.19	0.08 0.12	0.11 0.18
Standard	(A+K)	Towaway All Acc.	0.78 0.74	0.61 0.71	0.57 0.67	0.47 0.50	0.56 0.66
Intermediate	Any Injury	Towaway All Acc.	0.35 0.38	0.32 0.35	0.21 0.25	0.15 0.10	0.21 0.25
	(A+K)	Towaway All Acc.	0.72 0.82	0.78 0.82	0.49 0.58	0.63 0.67	0.62 0.70
Compact	Any Injury	Towaway All Acc.	0.23 0.30	0.16 0.27	0.20 0.31	0.17 0.15	0.18 0.24
	(A+K)	Towaway All Acc.	0.51 0.59	0.53 0.58	0.33 0.43	0.55 0.58	0.48 0.55
Subcompact	Any Injury	Towaway All Acc.	-0.18 -0.07	0.16 0.12	0.24 0.27	0.25 0.24	0.24 0.26
	(A+K)	Towaway All Acc.	0.73 0.74	0.56 0.66	0.47 0.58	0.52 0.55	0.52
All Sizes	Any Injury	Towaway All Acc.	0.25 0.31	0.18 0.25	0.21 0.26	0.19 0.16	0.19 0.23

Injury Severity

Figure 4.1 Belt effectiveness (%) as a function of injury severity, Campbell and Reinfurt, 1979.

restraints in the two data bases, the trends across car sizes and model years are preserved for the two crash populations.

In summary, the results in this section indicate that, for <u>serious</u> injury accidents, accident characteristics (e.g., rural-urban area, highway class, accident type, region of vehicle impact) are independent of sampling criterion. However, there are some differences when injury is not controlled for. Injury rates are overestimated in towaway data sets relative to all accidents, while

-38-

the opposite is true for restraint usage rates. However these rates, in towaway data sets and data sets that also include non-towaway crashes, show consistent trends across different vehicle sizes and model years.

Belt effectiveness is underestimated in towaway data sets compared with an all accidents data set. For <u>serious</u> driver injury, this ranges from 25 percent for luxury and medium-sized cars to about 13 percent for sub-compacts, for all model years combined. For any injury accidents, belt effectiveness is underestimated by nearly 39 percent for luxury and medium-sized cars and 7 percent for sub-compacts. This is to be expected if the hypothesis put forward by Campbell and Reinfurt (1979) is valid. Here, too, the trends across car sizes and model years are similar for the two sampling criteria.

V. SUMMARY AND CONCLUSIONS

The aim of this study was to investigate the effect of using a data set consisting of towaway crashes when compared to <u>all</u> accidents in the same sampling frame. This was done in two parts. First, the effects of certain independent variables on vehicle drivability were studied to determine which of these variables were most highly associated with drivability. Secondly, the relationships between vehicle drivability and some measures of accident severity were examined.

This study used data from two states. A 20 percent systematic random sample was obtained from the North Carolina 1976 accident data. A similar sample was obtained from the New York 1975 accident data for police-reported cases only.

The first portion of the analysis using North Carolina data showed that, for single vehicle accidents, the independent variables speed of accident, region of impact, and object struck (listed in order of importance) were most highly related to vehicle drivability. For multi-vehicle accidents, speed of accident, region of impact, vehicle maneuver, and vehicle size were most crucial. Similarly for the New York data, location of first event, type of road system, area of impact, and apparent contributing factor were most important for single vehicle accidents, and manner of collision, area of impact, type of road system, pre-accident vehicle action, and driver age for multi-vehicle accidents.

The variables selected from the two data sources were fairly comparable. For example, type of road system in the New York data should be essentially a proxy variable for speed of accident which was not available in the New York data. For the New York data, object struck was used to determine whether or not an accident was a single vehicle crash. Hence this variable does not appear in the list. The only major difference is the fact that driver age was not important for North Carolina accidents.

A log-linear model fitting procedure (BMDP, 1977) showed that, for single vehicle accidents in North Carolina, front-end, high speed impacts would be relatively more frequent (four-fold or more) in a NASS-type file. Similarly, for multi-vehicle accidents in North Carolina, it was found that, for vehicles going straight ahead, one would expect a higher proportion (two to four-fold) of front-end impacts, high speed impacts and accidents involving smaller cars in a towaway file. In the second step of the analysis the relationships between vehicle drivability and driver injury, vehicle severity, TAD severity score and vehicle dollar damage were examined for the North Carolina data. It was observed that each of these variables had a more serious consequence (e.g., driver injured, severe vehicle damage) when towing was required, even after controlling for all of the remaining measures of accident severity. In addition, the analysis indicated a consistently lower proportion of vehicles towed when injury occurred to an occupant other than the driver.

In a comparable analysis of the New York data, it was feasible to include only two measures of accident severity, namely, driver injury and extent of vehicle damage. Here again, towaway accidents were associated with more serious levels of each of the two variables when the other was being controlled for. It was also observed that the proportion of vehicles towed was higher for each level of vehicle damage when the driver was injured. In all likelihood, this is due to the width of the five damage categories: none, slight, moderate, severe, demolished. Given a particular category, towing would be more likely to occur at the upper end of that damage category where the relatively more severe crashes occur.

The relative odds representing the chance of a vehicle being towed give an indication of the magnitude of the differences introduced by using a towaway reporting threshold rather than using all accidents. Thus, for example, if one were focusing on side impacts in single vehicle accidents, then from Table 3.7 there would be fewer than expected such crashes at low speeds in a data set based on a towaway reporting threshold. In addition, for single vehicle accidents, such data sets will have an underrepresentation of accidents when the object struck is not very rigid such as fence, sign or guardrail. Similarly for multi-vehicle accidents, if a particular study required a representative sample of vehicle sizes in accidents -- not just of those involved in serious accidents -- then, from Table 3.8, it is apparent that a NASS-type data set would not be suitable.

In Chapter 4 the effect of towaway crashes as a sampling criterion on accident and injury characteristics as well as on effectiveness investigations was studied. The results showed that there were overall differences in accident characteristics under the two sampling schemes. However, for accidents with severe occupant injuries, there were not apparent differences in accident characteristics such as rural-urban area, highway class, accident type under the two sampling schemes (i.e., the towaway subset constitutes virtually all of the sampling frame of serious injury-producing accidents).

-42-

The results in Chapter 4 indicate that, compared with all accidents, injury rates are overestimated, while restraint usage and belt effectiveness are underestimated in towaway accidents and provide estimates of these differences. However, each of these measures showed similar trends across vehicle size and model year under the two sampling criteria.

The study shows that most of the effects introduced by using a towaway reporting threshold agree with intuition. Thus for instance, it was shown that the odds for high speed, single vehicle accidents being included in towaway samples are about four times the odds for low speed, single vehicle accidents being included. As high speed accidents generally have a more severe consequence, such an effect would in many analyses not be too restrictive.

In summary, the results of the investigation indicate that there are differences between accident data based on a towaway criterion and accident data based on a typical statewide reporting threshold (e.g., personal injury and/or property damage exceeding \$200). Most configurations such as high speed, front-end impacts, which result in more severe accidents would be overrepresented in such data bases, and consequently this should be accounted for when non-injury or minor injury accidents are the focus of a given study. However, when the injury criterion is relatively serious, the towaway sample will not exclude many injuries of interest. For example, the towaway sample will exclude only approximately 1.5 percent of the fatalities (K) and only 4.6 percent of the serious (A+K) injuries. Thus, the injuries generally of most interest will by-and-large be included in the towaway sample.

LIST OF REFERENCES

- PMDP. Biomedical computer programs, P-series. Department of Biomathematics, University of California, Los Angeles, 1977.
- Campbell, B.J. & Reinfurt, D.W. The degree of benefit of belts in reducing injury - an attempt to explain study discrepancies. SAE Technical Paper Series, No. 790684, June 1979.
- Haberman, S.J. Log-linear fit for contingency tables, algorithm AS 51. Applied Statistics, 21, 1972, 218-224.
- Higgins, J.E. & Koch, G.G. Variable selection and generalized Chi-square analysis of categorical data applied to a large cross-sectional occupational health survey. International Statistical Review, 45, 1977, 51-62.
- Reinfurt, D.W., Silva, C.Z. and Seila, A.F. A statistical analysis of seat belt effectiveness in 1973-1975 model cars involved in towaway crashes. Volume 1. Highway Safety Research Center, University of North Carolina, May 1976.
- Scott, R.E., Flora, J.D., and Marsh, J.C. An evaluation of the 1974 and 1975 restraint systems. University of Michigan, Highway Safety Research Institute, May 1976.
- Stewart, R.J. & Stutts, J.C. A categorical analysis of the relationship between vehicle weight and driver injury in automobile accidents. Highway Safety Research Center, University of North Carolina, May 1978.

APPENDIX A

Variables of Interest from 1976 North Carolina Accident Data

Day of Week 1. 5 Friday 1 Monday Saturday 2 6 Tuesday 7 Sunday 3 Wednesdav Not stated 8 4 Thursday 2. Time of Day (24 hour clock including minutes) 0000 Midnight 1200 Noon 2460 Not stated example: 1630 = 4:30 PM 3. Investigating Agency 1 Municipal police 2 Sheriff 3 Rural or county police 4 Highway patrol 5 Other traffic investigating agency 6 Not stated 4. Highway Class Interstate 5 Rural unpaved road 1 2 U.S. 6 City street 3 N.C. 7 Private property 8 Not stated 4 Rural paved road 5. Light Condition 1 Daylight 2 Dusk 3 Dawn 4 Darkness (street lighted) 5 Darkness (street not lighted) 6 Not stated **Object** Struck 6. 1 Tree 9 Sign or sign post 2 Utility pole 10 Animal Ditch bank 3 Fence or fence post 11 12 Parked vehicle 4 Guardrail or guardpost in median 5 Guardrail or guardpost on 13 Pedestrian shoulder 14 Other object 6 Bridge 15 No object struck Not stated 7 Underpass 16 8 Traffic island, curb or median

7. Accident Severity (Most severe injury in accident using the definition given in the "Classification of Motor Vehicle Traffic Accidents" (1976) published by the National 1 Fatal 2 A or B class injury Safety Council) 3 C class injury 4 Property damage only 5 Not stated 8. Accident Type Ran off road - right 1 Ran off road - left 2 3 Ran off road - straight ahead Non-collision in road - overturn 4 Non-collision in road - other 5 6 Collision of motor vehicle with pedestrian Collision of motor vehicle with parked vehicle 7 Collision of motor vehicle with train 8 Collision of motor vehicle with bicycle 9 Collision of motor vehicle with animal 10 Collision of motor vehicle with fixed object 11 12 Collision of motor vehicle with other object 13 Collision of MV with another MVs rear end - stopping or slowing 14 Collision of MV with another MVs rear end - turning Collision of MV with another MV turning left from same roadway 15 Collision of MV with another MV turning left across traffic 16 17 Collision of MV with another MV turning right from same roadway Collision of MV with another MV turning right across traffic 18

20 Collision of MV with another MV sideswipe 21 Collision of MV with another MV at an angle 22 Collision of MV with another MV backing 23 Not stated Initial Point of Contact

Collision of MV with another MV head on

(The lst of 3 points possibly marked) 1-24 as diagrammed

19

9.

25 Front end - distributed impact
29 Roll-over only
26 Left side - distributed impact
20 No contact
27 Rear end - distributed impact
28 Right side - distributed impact
NOTE: To be distributed, at least 2 of the 3 impact sites were marked.

10. Roll-over 1 Yes 2 No 11. Vehicle Maneuver** 9 Making U turn Stopped in travel lane 1 10 Backing Parked out of travel lanes 2 Slowing or stopping 11 3 Parked in travel lane 12 Starting in roadway 4 Going straight ahead 13 Parking 5 Changing lanes or merging Leaving parked position 14 Passing 6 15 Other 7 Making right turn 16 Not stated 8 Making left turn 12. Vehicle Defect Defective tires 5 Defective brakes 1 Other defect 6 Defective headlights 2 7 No defect detected 3 Defective rear lights 8 Not stated Defective steering 4 13. Estimated Speed Prior to Impact Actual speed (0 is valid) 999 Not stated 14. TAD Rating #1 (NOTE: TAD is all blank if n.s.) Impact site & type of impact Possible codes are alphabetic (See 'Vehicle Damage Scale for Traffic Accident Investigators" (1971) published by the National Safety Council) 15. Damage Severity Rating 1-7 possible 16. Amount of Damage to Vehicle In tens of dollars 9999 Not stated example: 0050 = \$500-50917. Vehicle Model Year (As noted by investigating officer) Vehicle Size (derived from the VIN) 18. 7 Mini car 1 Luxury car 2 8 Specialty car Medium car 9 3 Standard car Imported car 10 Small Truck (van, pickup, etc.) 4 Intermediate car Large Truck or Tractor-Trailer 5 Compact car 11 12 Unknown 6 Subcompact car

**See the Vehicle Maneuver Recodes at the end of this Appendix.

A-4

19.	Body Style (derived from the VIN)		·
	<pre>1 2 door sedan 2 2 door hardtop 3 2 door convertible 4 2 door stationwagon 5 4 door sedan 6 4 door hardtop 7 4 door convertible</pre>	8 9 10 41 42 43 99	4 door stationwagon (3-4 seat) Van body (hood size unknown) Truck body - long hood Truck body - short hood
20.	Model Year (derived from the VIN)		
	NOTE: may differ by 1 year from the	e yea	r recorded by the officer
21.	Total Number of Occupants		
	0-8 9 More than 8 occupants - Not stated		
22.	Physical Condition of Driver		
	l Ill 2 Fatigued 3 Asleep 4 Other physical impairment	5 6 7	Restriction not complied with Normal Not stated
23.	Sobriety of Driver		
	Had not been drinking Drinkingability impaired Drinkingunable to determine imp Not stated	pairm	ent
24.	Driver Charged with Violation		
	1 Yes 2 No 3 Not stated		
25.	Vehicle Drivability (beginning 1/76)		
	l Drivable 2 Not drivable 0 Not stated		
26.	Vehicle Severity (Most severe injury in vehicle)		
	l Fatal 2 A class injury 3 B class injury	4 5 6	C class injury Property damage only Not stated

27.	Injury Class of Driver		
	l Not injured 2 Class C injury 3 Class B injury 4 Class A injury	5 6 7	Killed Driver not present Not stated
28.	Restraint of Driver		
	l No belt 2 Lap belt 3 Shoulder & lap 4 Shoulder belt	5 6 7	Child restraint Driver not present Not stated
29.	Race of Driver		
	l White 2 Negro 3 Indian	4 5 6	Other Driver not present Not stated
30.	Sex of Driver		
	l Male 2 Female 3 Driver not present 4 Not stated		
31.	Age of Driver		
	(Actual age on day of accident) 01-96 97 Older than 96 98 Driver not present 99 Not stated		
32.	Means of Involvement		
	Single Vehicle Accident	Mu	lti-vehicle Accident
	<pre>1 Ran-off-road (1 veh. with acc. type = 1,2,3) 2 Hit fixed object (1 veh. with acc. type = 11) 3 Hit non-fixed object (1 veh. with acc. type = 4,5,12)</pre>	4 5 6	(car with above veh. type & truck of veh. type = 5 thru 13)
	Other Accidents		

7 Any 1 or 2 veh. accident not categorized above (e.g. acc. type = 6,8,9,10 & 2 vehicle accidents involving 2 trucks or any motorcycles)

33.	Regi	ion of Impact	
	1 2 3	(pt. of contact - 1,2,3,4,21,25)(p.o.c. = 8,14,15,16,17,27)Right side collision5(p.o.c. = 18,19,20,28)(p.o.c. = 9 thru 13 &	į
34.	Spee	ed of Accident (created from vehicle speed(s) and accident configuration	on)
	1 2 3 4	50-79 mph	
	Vehi	icle Maneuver Recodes (Variable #7, Appendix A)	
	١	Stopped in travel lane (01) Making right turn (07)	
	2	Parked out of travel lanes (02) Parked in travel lane (03) Other (15)	
	3	Going straight ahead (04)	
	4	Changing lanes or merging (05) Leaving parked position (14)	
	5	Passing (06) Making left turn (08) Making U turn (09)	
	6	Slowing or stopping (11) Starting in roadway (12)	
	7	Backing (10) Parking (13)	

APPENDIX B

Variables of Interest from 1975 New York Accident Data

1.	Hour		
	01-24 (Military clock) 24 Unknown		
2.	Land Usage		
	0 Unknown 1 School/playground 2 One/two family residential 3 Apartment residential	4 5 6 7	Business/shopping Industrial/manufacturing Agricultural/undeveloped Recreational/Park/Camping
3.	Weather		
	0 Unknown 1 Clear 2 Cloudy 3 Rain	4 5 6 7	Snow Sleet/Hail/Freezing Rain Fog/Smog/Smoke Other
4.	Road Character		
	0 Unknown 1 Straight and Level 2 Straight/Grade 3 Straight at Hillcrest	4 5 6	Curve and Level Curve and Grade Curve at Hillcrest
5.	Road Surface Condition		مەر يەر ئەر يەر يەر يەر يەر يەر يەر يەر يەر يەر ي
	0 Unknown 1 Dry 2 Wet 3 Muddy	4 5 6	Snow/Ice Slush Other
6.	First Event		
	0 Unknown		
	Collision With		
	1 Motor vehicle 2 Pedestrian 3 Bicyclist	4 5 10	Animal Railroad train Other

	B3		
	Collision With	Fixed O	bject
	<pre>11 Light support/Utility pole 12 Guide rail 13 Crash cushion 14 Sign post 15 Tree 16 Building/Wall 17 Curbing 18 Fence</pre>	19 20 21 22 23 24 30	Bridge structure Culvert/Headwall Median/Barrier Snow embankment Earth element/Rock/Ditch Fire hydrant Other fixed object
	Non-Col	lision	
	31 Overturned 32 Fire/Explosion 33 Submersion 34 Ran off road only 40 Other		
7.	Manner of Collision		
	0 Unknown 1 Rear End 2 Overtaking 3 Left Turn 4 Intersection	5 6 7 8 9	Right Turn Right Turn Head On Sideswipe Other
8.	Type of Road System		
	0 Unknown 1 State Highway 2 County Roads 3 Town Roads 4 Municipal Streets 5 Parkway	6 7 8 9 10 11	Thruway Northway Other Limited Access Highwa Unknown Roadway Non-Traffic Interstate
9.	Age of Driver		
	00-76 Years 99 Unknown		
10.	Model Year		
	0 Unknown 21-76		
11.	Apparent Contributing Factors		
	0 Unknown 1 None		

Human

B-4

	2 3 4 5 6 7 8 9 10 11	Alcohol Involvement Backing Unsafely Driver Inattention Driver Inexperience Drugs (Illegal) Failure to Yield Right of Way Fell Asleep Following Too Close Illness Lost Consciousness	12 13 14 15 16 17 18 19 40	Passenger Distraction Passing or Lane Usage Improper Pedestrian's Error/Confusion Physical Disability Prescription Medication Traffic Control Device Disregarded Turning Improper Unsafe Speed Other (Human)
		Vehicular	n	
	41 42 43 44 45	Accelerator Defective Brakes Defective Headlights Defective Other Lighting Defects Oversized Vehicle	46 47 48 49 60	Steering Failure Tire Failure/Inadequate Tow Hitch Defective Windshield Inadequate Other (Vehicle)
		, Environment	al	
	61 62 63 64 65	Animal's Action Glare Lane Marking Improper/Inadequate Obstruction/Debris Pavement Defective	66 67 68 6 <u>9</u> 80	Pavement Slippery Shoulders Defective/Improper Traffic Control Device Improper/ Non-Working View Obstructed/Limited Other (Environmental)
12.	Pre-Ac	cident Vehicle Action	· · · · · · · · · · · · · · · · · · ·	- <u> </u>
	0 U 1 G 2 M 3 M 4 M 5 S 6 S 7 S	nknown oing Straight Ahead laking Right Turn laking Left Turn tarting from Parking tarting in Traffic lowed or Stopping topped in Traffic	10 11 12 13 14	Entering Parked Position Parked Avoiding Object in Roadway Changing Lanes Overtaking Merging Backing Other
13.	Area o	f Impact		
	1 10 20 30	Unknown Undercarriage Hood and Front Right Front Fender Right Door(s) Right Rear Fender	50 60 70 80 90	Rear and Trunk Left Rear Fender Left Door(s) Left Front Fender Roof
14.	No. of	Occupants		

00-98 99 Unknown

15.	<u>Rest</u>	raint Use of Driver					
	0 1 2 3	Unknown No Restraint Used Lap Belt Harness		4 5 6	Lap Belt and Harness Child Restraint Other		
16.	Tota	l of Injuries					
		No injuries or no -99	injury info	rmation			
17. Second Event							
	0	Unknown					
			Collisio	n With			
•	1 2 3	Motor vehicle Pedestrian Bicyclist		4 5 10	Animal Railroad Train Other		
		Co	llision Wit	h Fixed O	bject		
	11 12 13 14 15 16 17 18	Light Support/Utili Guide Rail Crash Cushion Sign Post Tree Building/Wall Curbing Fence	ty Pole	19 20 21 22 23 24 30	Culvert/Headwall Median/Barrier Snow Embankment		
			Non-Co	llision			
	31 32 33	Overturned Fire/Explosion Submersion		34 40	Ran Off Road Only Other		
13.	Exte	nt of Damage					
	0 1 2 3 4 5	Unknown (N) None (L) Light (M) Moderate (S) Severe (D) Demolished					
19.	Vehi	cle Towed					
	0 1	No Yes					

20.	Driv	er's Type of Physical Complaint		
	0 1 2 3 4 5 6	Unknown Amputation Concussion Internal Minor Bleeding Severe Bleeding Minor Burn	7 8 9 10 11 12 13	Moderate Burn Severe Burn Fracture Dislocation Contusion-Bruise Abrasion Complaint of Pain None Visible
21.	Driv	er's Status		
	0 1 2 3 4	Not Applicable or Unknown K or Apparently Dead A or Unconscious Semiconscious B Injury	5 6 7 8 9	C Injury Incoherent Shock Conscious No Injury
22.	<u>Loca</u>	tion of Driver's Physical Complaint		
	0 1 2 3 4 5 6	Unknown Head Face Eye Neck Chest Back	7 8 9 10 11 12	Shoulder-Upper Arm Elbow-Lower Arm-Hand Abdomen-Pelvis Hip-Upper Leg Knee-Lower Leg-Foot Entire Body

APPENDIX C

Fitted Frequencies for Multi-Vehicle Accidents (20% 1976 North Carolina)

Table C.1 Fitted frequencies and odds ratios of non-drivable vs. drivable accidents by vehicle maneuver, vehicle size, impact size, and accident speed. (Source: 20% 1976 North Carolina data)

						Vehic	le Maneuv	er*		
Speed	Impact Site	Vehicle Size**	Vehicle Drivable	ı	2	3	4	5	6	7
		LM	No Yes (Odds Ratio)	16.5 102.7 (0.2)	2.4 7.1 (0.3)	140.0 397.0 (0.4)	3.7 33.7 (0.1)	19.3 85.8 (0.2)	19.4 96.5 (0.2)	0.4 4.0 (0.1)
		SI	No Yes (Odds Ratio)	46.9 258.3 (0.2)	5.2 13.5 (0.4)	440.2 1100.6 (0.4)	9.8 77.5 (0.1)	60.8 237.9 (0.3)	57.9 254.1 (0.2)	1.2 11.3 (0.1)
	Front	Co	No Yes (Odds Ratio)	18.6 77.5 (0.2)	2.3 4.6 (0.5)	177.9 336.2 (0.5)	3.6 21.7 (0.2)	26.6 78.8 (0.3)	24.0 79.6 (0.3)	0.4 3.1 (0.1)
		S	No Yes (Odds Ratio)	35.9 115.1 (0.3)	2.9 4.4 (0.7)	266.1 387.5 (0.7)	7.1 32.8 (0.2)	37.4 85.4 (0.4)	36.4 93.1 (0.4)	0.4 2.2 (0.2)
		Tr	No Yes (Odds Ratio)	8.1 65.3 (0.1)	1.4 5.2 (0.3)	95.9 351.6 (0.3)	2.7 31.4 (0.1)	11.7 67.4 (0.2)	11.8 76.3 (0.2)	0.5 6.4 (0.1)
		LM	No Yes (Odds Ratio)	5.0 55.0 (0.1)	2.1 12.8 (0.2)	33.4 227.2 (0.2)	1.6 26.2 (0.1)	14.4 93.0 (0.2)	3.4 16.4 (0.2)	0.5 10.9 (0.1)
		\$1	No Yes (Odds Ratio)	14.1 137.7 (0.1)	4.5 24.4 (0.2)	104.6 626.9 (0.2)	4.1 60.1 (0.1)	45.0 256.8 (0.2)	10.2 43.0 (0.2)	1.5 30.4 (0.1)
Low	Side	Co	No Yes (Odds Ratio)	5.4 39.4 (0.1)	1.9 7.9 (0.2)	40.3 182.7 (0.2)	1.5 16.1 (0.1)	18.8 81.2 (0.2)	4.0 12.9 (0.3)	0.5 7.9 (0.1)
		S	No Yes (Odds Ratio)	10.3 58.4 (0.2)	2.4 7.5 (0.3)	60.1 209.8 (0.3)	2.8 24.2 (0.1)	26.4 87.6 (0.3)	6.1 15.0 (0.4)	0.5 5.7 (0.1)
		Tr	No Yes (Odds Ratio)	1.9 27.8 (0.1)	1.0 7.5 (0.1)	18.2 159.7 (0.1)	0.9 19.4 (0.1)	6.9 58.0 (0.1)	1.7 10.3 (0.2)	0.5 13.7 (0.1)
		··· LM	No Yes (Odds Ratio)	18.3 207.4 (0.1)	2.4 10.7 (0.2)	9.8 88.6 (0.1)	1.2 9.3 (0.1)	5.6 43.5 (0.1)	12.5 107.7 (0.1)	1.1 71.6 (0.0)
		SI	No Yes (Odds Ratio)	53.2 532.0 (0.1)	5.3 20.9 (0.3)	31.3 250.5 (0.1)	5.2 21.8 (0.2)	18.0 123.0 (0.1)	38.1 289.4 (0.1)	3.4 204.4 (0.0)
	Rear	Co	No Yes (Odds Ratio)	22.1 167.2 (0.1)	2.5 7.5 (0.3)	13.2 80.1 (0.2)	1.2 6.4 (0.2)	8.3 42.7 (0.2)	16.6 94.9 (0.2)	1.3 58.5 (0.0)
		S	No Yes (Odds Ratio)	40.3 234.9 (0.0)	2.9 6.7 (0.4)	18.7 87.3 (0.2)	2.3 9.2 (0.3)	11.0 43.7 (0.3)	23.8 105.0 (0.2)	1.1 39.7 (0.0)
		Tr	No Yes (Ndds Ratio)	8.9 130.7 (0.1)	1.3 7.9 (0.2)	6.6 77.8 (0.1)	0.9 8.6 (0.1)	3.4 33.9 (0.1)	7.6 84.4 (0.1)	1.3 112.7 (0.0)

*For recoded values see page A-7 **LM = Luxury, Medium; SI = Standard, Intermediate; Co = Compact; S = Subcompact, Imported; Tr = Trucks.

Table C.1 (Con't)

	······					ras ingr≉s				-
						Vehic	1e Maneuv	er#		
Speed	Impact Site	Vehicle Size**	Vehicle Drivable	1	2	3	4	5	6	7
		LM	No Yes (Odds Ratio)	8.8 25.5 (0.3)	2.3 2.2 (1.0)	302.0 335.5 (0.9)	5.5 19.1 (0.3)	35.6 71.7 (0.5)	17.2 39.0 (0.4)	0.7 1.5 (0.5)
		SI	No Yes (Odds Ratio)	25.1 64.6 (0.4)	4.0 4.2 (1.0)	956.7 937.0 (1.0)	14.4 44.3 (0.3)	112.7 200.5 (0.6)	51.9 103.3 (0.5)	2.1 4.1 (0.5)
	Front	Co	No Yes (Odds Ratio)	10.1 19.5 (0.5)	2.2 1.4 (1.6)	389.3 288.2 (1.4)	5.4 12.5 (0.4)	49.7 66.9 (0.7)	21.6 32.6 (0.7)	0.8 1.1 (0.7)
		S	No Yes (Odds Ratio)	16.3 24.5 (0.7)	2.3 1.2 (1.9)	491.3 280.2 (1.8)	8.9 16.0 (0.6)	59.0 61.1 (1.0)	27.7 32.2 (0.9)	0.6 0.7 (0.9)
		Tr_	No Yes (Odds Ratio)	4.7 17.9 (0.3)	1.4 1.8 (0.8)	227.7 327.2 (0.7)	4.3 19.7 (0.2)	23.8 62.1 (0.4)	11.6 33.9 (0.3)	0.9 2.5 (0.4)
-		LM	No Yes (Odds Ratio)	5.0 27.1 (0.2)	1.7 3.5 (0.5)	106.1 298.2 (0.4)	4.7 32.1 (0.1)	37.6 116.6 (0.3)	9.0 20.6 (0.4)	0.8 4.1 (0.2)
		\$I	No Yes (Odds Ratio)	14.2 68.2 (0.2)	3.6 6.8 (0.5)	334.5 828.9 (0.4)	12.3 74.0 (0.2)	118.5 324.3 (0.4)	27.0 54.5 (0.5)	2.6 11.5 (0.2)
Medium	Side	Co	No Yes (Odds Ratio)	5.4 19.7 (0.3)	1.6 2.2 (0.7)	129.9 243.3 (0.5)	4.4 19.9 (0.2)	49.9 103.2 (0.5)	10.7 16.4 (0.7)	0.9 3.0 (0.3)
,		S	No Yes (Odds Ratio)	8.8 24.6 (0.4)	1.5 1.8 (0.9)	163.3 235.6 (0.7)	7.2 25.3 (0.3)	59.0 94.0 (0.6)	13.7 16.1 (0.9)	0.7 1.8 (0.4)
		Tr	No Yes (Odds Ratio)	2.1 15.0 (0.1)	0.8 2.3 (0.3)	63.5 230.8 (C.3)	3.0 26.1 (0.1)	20.0 80.1 (0.2)	4.8 14.2 (0.3)	0.9 5.7 (0.2)
		LM	No Yes (Odds Ratio)	10.8 78.3 (0.1)	2.7 5.4 (0.5)	6.9 33.6 (0.2)	0.6 2.6 (0.2)	8.7 41.7 (0.2)	6.0 32.0 (0.2)	0.7 13.4 (0.1)
		SI	No Yes (Odds Ratio)	31.7 202.4 (0.2)	6.0 10.6 (0.6)	22.3 95.6 (0.2)	1.7 6.2 (0.3)	28.0 119.0 (0.2)	18.4 86.7 (0.2)	2.3 38.5 (0.1)
	Rear	Co	No Yes (Odds Ratio)	13.3 64.1 (0.2)	2.8 3.8 (0.7)	9.5 30.8 (0.3)	0.7 1.8 (0.4)	13.0 41.6 (0.3)	8.1 28.6 (0.3)	0.9 11.1 (0.1)
		S	No Yes (Odds Ratio)	20.4 75.9 (0.3)	2.8 2.9 (1.0)	11.4 28.3 (0.4)	1.0 2.2 (0.5)	14.6 36.0 (0.4)	9.8 26.7 (0.4)	0.7 6.3 (0.1)
		Tr	No Yes (Odds Ratio)	5.8 54.3 (0.1)	1.7 4.4 (0.4)	5.2 32.4 (0.2)	0.5 2.7 (0.2)	5.8 35.8 (0.2)	4.0 27.6 (0.1)	0.9 23.2 (0.0)

*For recoded values see page A-7**LM = Luxury, Medium; SI = Standard, Intermediate; Co = Compact; S = Subcompact, Imported; Tr = Trucks.

Table C.1 (Con't)

			[Vehic	le Maneuv	er *		
Speed	Impact Site	Vehicle Size**	Vehicle Drivable	1	2	3	4	5	6	7
		LM	No Yes (Odds Ratio)	2.2 3.7 (0.6)	1.4 0.8 (1.8)	106.0 57.9 (1.8)	2.0 3.6 (0.6)	15.5 16.7 (0.9)	5.7 8.0 (0.7)	0.5 0.3 (1.7)
		SI	No Yes (Odds Ratio)	6.3 9.3 (0.7)	3.1 1.5 (2.1)	332.8 160.2 (2.1)	5.1 8.2 (0.6)	48.8 46.2 (1.1)	17.0 21.1 (0.8)	1.5 1.0 (1.5)
	Front	Co	No Yes (Odds Ratio)	2.5 2.8 (0.9)	1.4 0.5 (2.8)	132.6 48.3 (2.8)	1.9 2.3 (0.8)	21.1 15.1 (1.4)	6.9 6.5 (1.1)	0.5 0.3 (1.7)
		s	No Yes (Odds Ratio)	2.9 2.5 (1.1)	1.0 0.3 (3.3)	122.6 34.4 (3.6)	2.3 2.1 (1.1)	18.3 11.0 (1.7)	6.5 4.7 (1.4)	0.3 0.1 (3.0)
		Tr	No Yes (Odds Ratio)	1.5 3.3 (0.5)	1.1 0.8 (1.4)	100.4 70.9 (1.4)	2.0 4.6 (0.4)	13.1 18.1 (0.7)	4.8 8.8 (0.6)	0.8 0.8 (1.0)
		LM	No Yes (Odds Ratio)	1.4 5.2 (0.3)	1.2 1.7 (0.7)	45.1 72.9 (0.6)	1.9 7.8 (0.2)	18.8 36.3 (0.5)	2.9 4.8 (0.6)	1.0 2.0 (0.5)
		\$1	No Yes (Odds Ratio)	4.0 12.9 (0.3)	2.5 3.2 (0.8)	140.8 200.9 (0.7)	4.9 17.9 (0.3)	58.8 100.1 (0.6)	8.6 12.7 (0.7)	3.1 5.5 (0.7)
ligh	Side	Co	No Yes (Odds Ratio)	1.5 3.6 (0.4)	1.1 1.0 (1.1)	53.5 57.7 (0.9)	1.7 4.7 (0.4)	24.2 31.2 (0.9)	3.3 3.7 (0.9)	1.1 1.4 (0.8)
		S	No Yes (Odds Ratio)	1.8 3.3 (0.6)	0.8 0.6 (1.3)	49.3 41.0 (1.2)	2.1 4.4 (0.5)	21.0 20.8 (1.0)	3.1 2.7 (1.2)	0.6 0.6 (1.0)
		Tr	No Yes (Odds Ratio)	0.8 3.6 (0.2)	0.7 1.3 (0.5)	33.8 70.9 (0.5)	1.5 8.0 (0.2)	12.5 31.3 (0.4)	1.9 4.2 (0.5)	1.3 3.4 (0.4)
		LM	No Yes (Odds Ratio)	4.7 18.5 (0.3)	1.8 1.9 (1.0)	4.0 9.0 (0.4)	0.5 1.0 (0.5)	4.5 10.7 (0.4)	2.1 6.6 (0.3)	0.4 2.3 (0.2)
		SI	No Yes (Odds Ratio)	13.8 47.3 (0.3)	3.9 3.8 (1.0)	12.8 25.3 (0.5)	1.3 2.3 (0.6)	14.3 30.4 (0.5)	6.5 17.8 (0.4)	1.2 6.4 (0.2)
	Rear	Со	No Yes (Odds Ratio)	5.6 14.7 (0.4)	1.8 1.3 (1.4)	5.3 8.0 (0.7)	0.5 0.7 (0.7)	6.5 10.4 (0.6)	2.8 5.8 (0.5)	0.4 1.8 (0.2)
		S	No Yes (Odds Ratio)	6.4 12.7 (0.5)	1.3 0.7 (1.9)	4.7 5.4 (0.9)	0.6 0.6 (1.0)	5.3 6.6 (0.8)	2.5 3.9 (0.6)	0.2 0.8 (0.3)
		Tr	No Yes (Odds Ratio)	3.2 16.1 (0.2)	1.4 2.0 (0.7)	3.7 10.9 (0.3)	0.5 1.2 (0.4)	3.7 11.6 (0.3)	1.8 7.2 (0.3)	0.6 4.9 (0.1)

*For recoded values see page A-7 **LM = Luxury, Medium; SI = Standard, Intermediate; Co = Compact; S = Subcompact, Imported; Tr = Trucks.

Appendix D. HSRC vehicle make and size groups.

Size GroupMake-Model (Example)LuxuryBig Buick (Electra)
Cadillac (Fleetwood)
Big Pontiac (Bonneville)MediumMedium Buick (LeSabre)
Medium Oldsmobile (Delta 88)
Medium Pontiac (Catalina)StandardStandard Chevrolet (Impala)
Standard Ford (Galaxie)
Standard Plymouth (Fury)

Chevrolet Chevelle (Chevelle Malibu) Intermediate Ford (Fairlane) Intermediate Oldsmobile (Cutlass) Intermediate Pontiac (LeMans)

Chevrolet Nova Ford Maverick Ford Mustang Plymouth Valiant

Subcompact

Intermediate

Compact

Domestic Chevrolet Vega Ford Pinto

Foreign

Datsun Toyota VW Beetle VW Fastback .

Aighway Safety lesearch Center
