

THE UNIVERSITY OF NORTH CAROLINA

HIGHWAY SAFETY

RESEARCH CENTER

North Carolina Department of Transportation Highway Safety Barrier Design Training

Instructor: Bill Fitzgerald, PE KLS Engineering, LLC (703) 858 1356

Virtual Live Training May 18 – 19, 2021

Guidance Presented

Ground Rules

- Be on time
- Participate
- Restrict sidebar conversations
- Turn off cellphones

Virtual Training – participate with yes/no answers to questions Use chat box to submit your questions/comments

Terminology: Page v

Additional Resources

HARDWARE ELIGIBILITY LETTERS

 Longitudinal Barriers and Bridge Rails Barrier Terminals and Crash Cushions Sign Supports, Mailboxes, and Delineator Posts Luminaire Supports Work Zone Device

CDOT

FHWA Eligibility Letters

https://safety.fhwa.dot.gov/roadway_dept/ countermeasures/reduce crash severity/

https://mwrsf.unl.edu/researchhub

MASH NEWS ABOUT PROIFCTS

Contact Us

1-4

TTI Pooled funds, etc.

https://www.roadsidepooledfund.org

UNIVERSITY of NEBRASKA-LINCOLN

IDWEST ROADSIDE SAFETY FACILITY

≡	Home	Who We Are	Services	Pooled Fund
<u>Nebraska</u>	+ <u>MwRSF</u> + Research Hub			

Research Hub

Objectives of Course

At the course you will be able to:

- Identify when a traffic barrier MAY be the best treatment to use at a specific site.
- Select a barrier that will adequately shield the identified hazard(s).
- Assess the topography of the site to provide for an optimal barrier system installation.

Session 1: Introduction and Pre-assessment

Session 1 Learning Outcomes

At the end of this session, you will be able to:

- Identify the primary Roadside Safety Concerns in North Carolina.
- Assess your current knowledge of Barrier Design Principles.

National Roadway Departure Fatalities

North Carolina Crash Data Trend

North Carolina Total Fatalities vs. Roadway Departure Fatalities

Session 1

Ref: FARS Data - 2019

North Carolina Strategic Highway Safety Plan

Session 1

Lane Departure STRATEGIES

- 1. Keep vehicles from leaving their travel lane.
- 2. Reduce the potential for and severity crashes when vehicles leave their lane.
- 3. Support & enhance driver education & awareness programs.

1-10

North Carolina Strategic Highway Safety Plan

Strategy 2: Reduce the potential for and severity of crashes when vehicles leave their lane.

Supporting Actions

 Continue to apply and evaluate the effectiveness of low-cost treatments such as Safety EdgeSM technology, clear zone maintenance, median barriers, and guardrail.

Real World Crashes

Real World Crashes

Need for Training

Potential consequences of poorly designed barrier systems include:

- Systems may not function as designed.
- Crash severities may be increased.

Need for Training

The next 9 slides show locations where barrier was installed. For each photo, decide at a glance whether you believe it to be:

- 1. Good example,
- 2. Bad example, or
- 3. Cannot decide without more information.

We will discuss these slides in further detail in later applicable sessions, so please record and save your responses.

(1114741-4)

Review Learning Outcomes

- Identify the primary Roadside Safety Concerns in North Carolina.
- Assess your current knowledge of Barrier Design Principles.

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 2: Clear Zone and Guidelines for Barrier Need

Session 2 Learning Outcomes

At the end of this session, you will be able to:

- Understand and apply the clear zone concept
- Identify objects and features that may require shielding

Clear Zone: A Definition

The unobstructed, traversable area provided beyond the edge of the through traveled way for the recovery of errant vehicles. The clear zone includes shoulders, bike lanes, and auxiliary lanes, except those auxiliary lanes that function like through lanes.

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition, Glossary

Clear Zone Principle

As Wide as Practical

Clear Zone Factors

Slope Type and Steepness

- Design Speed
- Traffic Volume
- Horizontal Curvature

Recoverable

Session 2

2-7

Non-Recoverable (but Traversable)

Critical

GM PROVING GROUND ACCIDENTS

211 CASES

NCDOT Design Clear Zone Table

	A CONTRACT OF THE OWNER.	al l		A A A A A A A A A A A A A A A A A A A	A V JAKEN	1 maintainer 1	
Docign	Docign	Foreslopes			Backslopes		
Design	Design	1V:6H	1V:5H to	11/211	11/211	1V:5H to	1V:6H or
Speed	ADT	or flatter	1V:4H	1V:3H	1V:3H	1V:4H	flatter
40 mph	UNDER 750	7-10	7-10	**	7-10	7-10	7-10
or less	750-1500	10-12	12-14	**	10-12	10-12	10-12
	1500-6000	12-14	14-16	**	12-14	12-14	12-14
	OVER 6000	14-16	16-18	**	14-16	14-16	14-16
45-50 mph	UNDER 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	OVER 6000	20-22	24-28	**	14-16	18-20	20-22
55 mph	UNDER 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	OVER 6000	22-24*	26-32 [*]	**	16-18	20-22	22-24
60 mph	UNDER 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32 [*]	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	OVER 6000	30-32 [*]	36-44*	**	20-22	24-26	26-28
65-70 mph	UNDER 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36 [*]	**	12-16	18-20	20-22
	1500-6000	28-32 [*]	34-42 [*]	**	16-20	22-24	26-28
	OVER 6000	30-34*	38-46*	**	22-24	26-30	28-30

* Clear zone distances can be limited to 30 feet unless in a high accident rate areas

Ref: Roadway Design Manual, Part I. Clear Zone Distances, 1-4N

Important Distinction

<u>Available</u> Clear Zone = Area <u>Existing</u> for recovery

<u>Design</u> Clear Zone = A <u>selected</u> value used for design to provide recovery area for a majority of errant drivers

Session 2

Do not compromise available clear zone

Session 2

2-14

Clear Zone Adjustments for Non-uniform Slopes

Clear Zone with a Ditch

- The combination of S₁ and S₂ needs to fall within the preferred area of Figure 3.6 of the RDG for the clear zone to extend beyond the ditch bottom
- If the combination is outside and S₁ is recoverable, the clear zone stops at the ditch bottom
- If S_1 is not recoverable, the clear zone stops at the top of the S_1 slope

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition, Figure 3.6, Pg. 3-9

Clear Zone with a Ditch - NCDOT

(A) INTERSTATES, FREEWAYS, EXPRESSWAYS, OTHER FOUR LANE FACILITIES, ARTERIALS, COLLECTORS AND LOCALS (OVER 4000 ADT DESIGN YEAR TRAFFIC)

NCDOT

Clear Zone with a steep Cut Slope

S (≥4) Recoverable	Clear Zone extends to the base of the cut.	
	If this distance is less than the design clear zone:	
	• For a smooth rock cut – it can be considered a natural barrier.	
	(Note a 2:1 smooth slope is not normally shielded)	
	 For a jagged rock cut – it is considered as any other significant obstacle within the design clear zone. 	
S (<4) Non- Recoverable	Clear Zone ends at the edge of shoulder.	

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition, Pg.3-24

DOT

....Curves Present Particular Safety Problems

Horizontal Curves - AASHTO

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition, Pg. 3-3

DOT

Horizontal Curve Adjustments

K_{cz} (Curve Correction Factor)(U.S. Customary Units)

Radius	Design Speed (mph)					
(ft)	40	45	50	55	65	70
2,950	1.1	1.1	1.1	1.2	1.2	1.2
2,300	1.1	1.1	1.2	1.2	1.2	1.3
1,970	1.1	1.2	1.2	1.2	1.3	1.4
1,640	1.1	1.2	1.2	1.3	1.3	1.4
1,475	1.2	1.2	1.3	1.3	1.4	1.5
1,315	1.2	1.2	1.3	1.3	1.4	-
1,150	1.2	1.2	1.3	1.4	1.5	-
985	1.2	1.3	1.4	1.5	1.5	-
820	1.3	1.3	1.4	1.5	-	-
660	1.3	1.4	1.5	-	-	-
495	1.4	1.5	-	-	-	-
330	1.5	-	-	-	-	-

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition, Table 3-2.Pg. 3-4

Horizontal Curves - NCDOT

The Roadside Design Guide states: "The designer **may** choose to modify...". Again, not normally done unless crash history indicates a problem.

Need approval by Roadway Design Unit

Remember - As Wide as Practical

Clear Zone and Curbs

The minimum lateral offset of 1.5 ft should be provided beyond the face of curbs to any vertical objects. This is called the Lateral Offset and *should not be construed as an acceptable clear zone distance.*

Session 2

Ref: AASHTO Roadside Design Guide, Section 10.2.1.1 Curbs

Clear Zone in an Urban Area

Session 2

Figure 10-1. Lateral Offset for Objects at Horizontal Curves on Curbed Facilities

NCDOT

Order of Preference

- 1. Remove hazard
- 2. Redesign hazard (make traversable)
- 3. Relocate hazard (move away from traffic)
- 4. Reduce Impact Severity (use breakaway design)

Session 2

- 5. SHIELD hazard
- 6. Delineate hazard so motorist can avoid

Ref: AASHTO Roadside Design Guide, 4th Edition – Pg. 1-4

Order of Preference - NCDOT

4.10 Traffic Barriers4.10.1 General Considerations

The preferred method of addressing roadside hazards is as follows:

- 1. Remove the hazard;
- 2. Remove embankment hazard (flatten slopes);
- 3. Shift hazard away from traffic;
- 4. Reduce the impact severity by using breakaway posts;
- 5. Protect the hazard;
- 6. Delineate the hazard so motorists are aware of the hazard.

Barriers Must Be Less of a Hazard

AASHTO Barrier Warrants

Obstacle	Guidelines
Bridge piers, abutments, and railing ends	Shielding generally required
Boulders	Judgment decision based on nature of fixed object and likelihood of impact
Culverts, pipes, headwalls	Judgment decision based on size, shape and location of obstacle
Foreslopes and backslopes (smooth)	Shielding not generally required
Foreslopes and backslopes (rough)	Judgment decision based on likelihood of impact
Ditches (parallel)	Refer to Figures 3-6 and 3-7
Ditches (transverse)	Shielding generally required if likelihood of head-on impact is high
Embankment	Judgment decision based on fill height and slope (see Figure 5-1)
Retaining Walls	Judgment decision based on relative smoothness of wall and anticipated maximum angle of impact
Sign/Luminaire supports	Shielding generally required for non-breakaway supports
Traffic signal supports	Isolated traffic signals within clear zone on high-speed rural facilities may warrant shielding
Trees	Judgment decision based on site-specific circumstances
Utility poles	Shielding may be needed on a case by case basis.
Permanent bodies of water	Judgment decision based on location and depth of water and likelihood of encroachment.

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition Chapter 5 Table 5-2, Pg. 5-9

ROADWAY DESIGN MANUAL

NCDOT Guidance

CHAPTER THREE

GUARDRAIL, BARRIERS AND ATTENUATORS

GUARDRAIL WARRANTS

Warrants for guardrail are to be in accordance with the "Roadside Design Guide" and with the guardrail warrant curves included in this Chapter.

In the preliminary design stage, the designer will establish the location and grade of the project so as to eliminate as much guardrail as possible using these warrants.

After location data is received, plans plotted, grades set, and initial templates determined, the following procedures should be followed:

- (1) Determine Guardrail Locations
 - (a) Is guardrail warranted in accordance with Figure 1 in this Chapter? If not required, go to (c). If required, go to (b).
 - (b) Is guardrail required in accordance with Figures 4 through 6 of this Chapter? If not required, go to (c).
 - (c) Is guardrail warranted in accordance with Table 2 and 3 in this Chapter? Refer to Sheet 1-4M and 1-4N in Chapter 1 of this manual.

Session 2

(2) Can Guardrail be eliminated?

3-1

NCDOT Guidance - Proposed

Obstacles* within the Clear Zone	Guideline		
Embankments	engineering judgment - see note 1		
Shoulder Drop-off with slope Steeper than 1:1 - greater than 2 feet height	guardrail required		
Shoulder Drop-off with slope Steeper than 1:1 - less than 2 feet height	Guardrail not required		
Bridge Piers, Abutments	Guardrail required - see note 2		
Culverts, Pipes, Headwalls	Guardrail required - see note 3		
Sign Supports	Guardrail required for non-breakaway supports		
Traffic Signal Supports	Engineering judgement based on each location		
Utility Poles	Engineering judgement based on each location		
Rough Rock Cuts	Guardrail required		
Large Boulders	Guardrail required		
Streams or Permanent Bodies of Water less than 2 feet in depth	Guardrail not required		
Streams or Permanent Bodies of Water greater than 2 feet in depth	Guardrail required		
Landscaping	Engineering judgement based on each location - see note 4		
* Obstacles may be nontraversable hazards or fixed objects Note 1 - see RDG Figure 5-1			
Note 2 - Subregional Tier Guideline allows for reduced lengths (see STG for details) Note 3 - section 5-2 original RDM need new information location			
Note 4 - Landscaping plans should be reviewed for potential hazards			

Embankment Guidelines

NC Embankment Warrants

Session 2

Ref: NCDOT Roadway Design Manual, Part 1, Chapter 3

NCDOT

Modified Embankment Warrants

Session 2

Ref: NCDOT Roadway Design Manual, Part 1, Chapter 3, Figure 5

Is barrier warranted at the locations shown in the next eight photos?

Do not consider effectiveness of existing barrier (if any).

Median Width Guidelines - AASHTO

Median Width Guidelines - NCDOT

ROADWAY DESIGN MANUAL

CDOT

PART 1

GUARDRAIL / GUIDERAIL TREATMENT IN MEDIAN LOCATIONS 3-6

Guidelines for typical Median Guardrail / Guiderail Installations:

Incorporate median guardrail / guiderail on all freeway projects with median widths of 70 feet or less.

Two types of installations will be used: Cable guiderail or steel beam guardrail with 6'- 3" post spacing (semi-rigid guardrail).

Review Learning Outcomes

- Understand and apply the clear zone concept
- Identify objects and features that may require shielding

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 3: Testing Requirements and Performance Characteristics of Common Barrier Systems

Session 3 Learning Outcomes

At the end of this session, you will be able to:

- Understand how barriers are tested for crashworthiness
- Identify common barrier systems

DOT

- Explain how these barrier systems function
- Define the key components of a transition design

Crash Testing Guidelines

- In 1993, crash testing and evaluation criteria were published as NCHRP Report 350
- In 2009, the Manual for Assessing Safety Hardware (MASH) was published by AASHTO. It was used by FHWA as the testing standard for all new products
- In 2016, an update to MASH was adopted and a timetable for implementation of new installations complying with this edition was signed between FHWA and AASHTO

MASH Implementation Timeline

(AASHTO/FHWA Joint MASH Implementation Agreement Issued January 7, 2016)

MASH Test Conditions

Selection of a performance level is based on speed and traffic mix.

TL-1, TL-2, and TL-3: crash tests with small car and pickup truck with a 25° impact angle at 31, 44, and 62 mph, respectively.

Session 3

2,420 lbs. 1100C

NCHRP 350 comparison with MASH Crew Cab Truck

MASH Test Conditions (cont'd)

TL- 4: TL-3 + 15° impact angle, 56 mph Single-Unit Truck
 TL- 5: TL-3 + 15° impact angle, 50 mph Tractor-Van Trailer
 TL- 6: TL-3 + 15° impact angle, 50 mph Tractor-Tank Trailer

22,000 lbs.

Session 3

80,000 lbs.

3-7

Functional Requirement of Barrier

- 1. Contain Vehicle
 - No Penetration
 - No Vaulting/Under-riding
- 2. Redirect Vehicle Smoothly (low exit angle) with no snagging/overturning, and no excessive rotation (75 degree max)

- 3. Tolerable Occupant Impact Forces
- 4. Minimum Occupant Compartment Deformation and no Debris Intrusion

Standard Barrier Systems

- Rigid Systems
- Semi-Rigid Systems
- Flexible Systems
- Median Barrier Systems

Barrier Systems: Rigid Barriers

Rigid Barrier Systems have little (between 0 to 1 ft.) deflection under the TL-3 pickup impact. They are generally anchored by some acceptable means.

Examples include:

- New Jersey Safety Shape Concrete Barrier
- F-shape Concrete Barrier
- Single or Slope Concrete Barrier
- Vertical Wall

Rigid Barrier

New Jersey Shape

F-Shape

Single Shape

Rigid Barrier – New Jersey Shape

TYPE IV - NO GLARE SCREEN PERMITTED

Type IV typically used

Types II & III for bifurcated crosssections

2" min Embedment minimizes Deflection

When large trucks are not an issue

Rigid Barrier – New Jersey Shape

2" min Embedment minimizes Deflection
Considered TL- 5
For use when conditions warrant (typical urban, high truck volume

Rigid Barrier – New Jersey Shape

MASH Testing of 32" New Jersey Shaped Concrete Barrier

Rigid Barrier

42+"

Note - No national criteria for when to use TL-4, 5, or 6

Rigid Barrier: TL-5

Zone of Intrusion

Zone of Intrusion (ZOI) the region measured above and behind the face of a barrier system where an impacting vehicle or any major part of the system may extend during an impact.

*Review TL-4 barrier heights fell in a range of 737 mm (29 in.) to 1.07 m (42 in.)

Figure 5-31. Zone of Intrustion for TL-4 Barriers per NCHRP Report 350

AASHTO LRFD Bridge Specification (7th Edition)

3.6.5.1 Where the design choice is to redirect or absorb the collision load, protection shall consist of one of the following:

- An embankment;
- A structurally independent, crashworthy groundmounted 54.0-in, high barrier, located within 10.0 ft from the component being protected; or
- A 42.0-in. high barrier located at more than 10.0 ft from the component being protected.

Such barrier shall be structurally and geometrically capable of surviving the crash test for Test Level 5, as specified in Section 13.

Barrier Systems: Semi-Rigid

Semi-Rigid Barrier Systems have deflections of a few feet (between 2 to 5 ft.) under the TL-3 pickup impact.

Typically consist of beam and post elements.

TERMINOLOGY: Call new system 31" (shows 2'-1" to bolt on standards)

Barrier Systems: Semi-Rigid

W-Beam Steel Guardrail – 350 Guardrail (29")

- 12" wide W-beam rail section (12-gauge thickness).
- Posts are spaced at 6'-3" centers, and the nominal rail height is 27" – 30"

- Rail splice at the post.
- Steel posts: W6 x 8.5/9.0 x 6'-0" long.
- Offset Block: 6" x 8" recycle plastic or composite.

Guardrail with Wood Post & Wood Offset Block 27 5/8" Height

Guardrail with Steel Post & Wood Offset Block 27 5/8" Height

Barrier Systems: Semi-Rigid

> 31" (shown in standards as 2'-1")

- 31" Height to Top of Rail
- Rail Splice mid-span.
- Post spacing 6'-3"
- Steel posts, W6 x 8.5/9.0 x 6'
- Offset Block: 8" recycled plastic or composite

31" Guardrail

Rail Splice / Mid-Span

8″

31" MASH Test 3-11

3-27

NCDOT 31" Guardrail

Existing Guardrail Height

Session 3

Must be ≥ 27" to <u>remain</u> in place within the Transportation Improvement Program (TIP)

3-29

Barrier Systems: Flexible Barriers

Flexible Barrier Systems typically have relatively large deflections

Examples of Flexible Barriers include:

- Weak post W-beam No longer in standards
- Low tension cable

High tension cable

To be removed from standards when MASH available

Barrier Systems: Flexible Barriers

- Low Tensioned Cable Barrier
 - Generic System
 - 3 cables design (center cable on opposite side of the post for median application).
 - Design deflection of approximately 12 ft.
 - Generic crashworthy terminal.

Cable Guiderail

NCDOT Cable Guiderail

Barrier Systems: Flexible Barriers

Session 3

Advantages of cable systems include:

- Low initial cost
- Lower deceleration forces
- Effective vehicle containment and redirection
- Installation conditions flexibility
- SNOW

Barrier Systems: Flexible Barriers

- High Tensioned Cable (HTC) Barrier
 - Five different proprietary designs available
 - Each requires a unique proprietary terminal
 - Somewhat reduced deflections
 - Generally easier maintenance
 - Can retain effectiveness after most impacts

High-Tension Cable (HTC) Systems

Brifen

- Safence
- CASS (Trinity Steel)

- Nucor
- Gibraltar ★

Currently, NO system has passed all MASH 2016 testing

Brifen USA

http://www.brifenusa.com

- Interweaving cables creates a "mini-anchor" at each post due to friction as the tensioned cables weave past each post.
 - 3 or 4 cable design available.

Session 3

3-37

Gibraltar

http://www.gibraltartx.com

- Has hairpin type connection to post.
- Posts to cable connection is alternate side-to-side
- 3 or 4-cable design available.

Trinity Industries

http://www.highwayguardrail.com

(Cable Safety System-CASS)

3 of 4 cable design available.

Session 3

Four Cable System

Post Foundation and Typical Terminal

HTC On 4:1 Slope

Barriers in the Median

Used to separate opposing traffic on a divided highway or to separate through traffic from local traffic.

- Many barriers approved for roadside applications can be modified for use in the median.
- Width of the median is an important consideration.
- Also must consider the dynamic deflection of the barrier to avoid intrusion into opposing traffic.
- There are terminals designed specifically to shield the ends of median barriers.

MASH 27" W-Beam Median Barrier Test

MASH 31" Median Barrier Test

MASH 31" Median Barrier

Flexible Median Barriers

Advantage of high tension cable is it may remain effective after impact.

Flexible Median Barriers

ra Nervine Nervine

Session 3

3-48

Treatment at Opening

Treatment at Opening

Transition Sections

When a softer (more flexible) barrier precedes a stiffer barrier, a gradual stiffening must occur between the two systems.

- > An effective transition must provide the following:
 - Adequate connection (TENSION continuity)
 - Adequate length to gradually increase stiffness.

Inadequate Transition

Transition Sections

Successfully crash-tested transitions include the following essential elements (in addition to a structural connection):

- Additional and/or Larger Posts
- Nested rail (w-beam or Thrie-beam)
- Curbs (only as crash-tested transition unit), Rub Rails, and/or Flared Parapet Wall to Prevent Snagging

NCDOT Transition – Thrie-beam

ELEVATION

NCDOT Transition – Previous Standard

NCDOT Transition – Direct

8	ROADWAY STANDARD DRAWING FOR	1-18 STATE OF
HEET 4	STRUCTURE ANCHOR UNIT	NORTH CAROLINA DEPT. OF TRANSPORTATION
	GUARDRAIL ANCHOR UNIT TYPE B-77	DIVISION OF HIGHWAYS
03	FOR F-SHAPE BARRIER	RALEIGH, N.C.

NCDOT Transition – With Curb

NPS Transition

600

31" Transition

Transition – 31", TL-2

Session 3

3-60

Connections to Low Parapets or Combination Rails

Session 3

If the concrete parapet or portion of a combination rail is less than the transition height (31"), a steel plate may be applicable to adjust the height.

Transition: HTC to Guardrail (Spatial)

HTC or LTC - Cable to W-Beam Transition

Probably not going to be available with MASH

HTC - Cable to W-Beam Transition

Temporary Barrier – Need for Tension

NCDOT

Traffic Management Plan

MANAGEMENT AND A REPORT OF A R

COMPUTED BY: KN MASHINGTON DATE: 05/28/2015 CHECKED BY: T.F. DUNCAN, PE DATE: 05/28/2015

PROJECT NO. SHEET NO. B-1303 3-B

Station +% CY CY CΥ CY. 13+00.08 17+89.94 34+44.63 1,300 22+90.00 SUBTOTALS: 25,501 -DET-REMOVAL 18,445 18,445 PROJECT TOTALS EST. 5% TO REPLACE TOP 1,325 SOIL OF BORROW PLT EST. SHOULDER MATERIA GRAND TOTALS: 25,455 18,640 CY 28,600 CY

SUMMARY OF EARTHWORK

UNDERCUT EXCAVATION = 500 CY SELECT GRANULAR MATERIAL = 5000 CY FABRIC FOR SOIL STABILIZATION = 1500 SY

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

SUMMARY OF EXISTING ASPHALT PAVEMENT REMOVAL

LINE	Station	Station	LOC LT/RT/CL	AREA 5V
-6-	13+40.00	18+14.00	- CL	263
4.	19+20.00	30+28.00	a	356
DET.	14+73.68	22+87.55	CL.	2,351
=				
-				
-				
-				
-				
_				
			TOTAL	2.920
-			101.001	2010
			847:	3,000 ST

APPROXIMATE QUANTITIES ONLY, UNCLASSIFIED EXCAVATION, FINE GRADING, CLEARING AND GRUBEING, AND REMOVAL OF EXISTING PAYEMENT WILL BE PAID FOR AT THE LUMP SUM PRICE FOR "GRADING".

"W" - DISTANCE FROM EDGE OF LANE TO FACE OF GUARDRAN.

TOTAL BROULDER WORTH - DISTANCE FROM EDGE OF TRAVEL LANE TO SHOULDER BREAK POINT. FLARE LENGTH - DISTANCE FROM LAST SECTION OF PARALLEL GUARDRAL TO END OF GUARDRAL.

	GUARDRAIL SUMMARY 52 - NONGAING INPACT ATTEMATIK: VE NO																									
UNE	BEG. STA	EN ITA.	LOC.	STRAIGHT	LENGTH TEMP	DOUBLE	MARR/	ANT POINT TRAIL	W" DIST FROM	SHLOR	FLAIR APPR	TRAIL	APPR.	W TRAIL	\mathbf{F}	TYPE	A GRAU	TEMP GRAU		1		P. ATTE		ENOVE		REMARKS
					STRAIGHT	FACED	END	END	E.O.L.	WIDTH	END	END	END	END			360	350			EA	6	NG 6	RDRAIL		
- dz	13+82.94	17+1 8	RT	475.08			15+65.00	17+71.94	10	12	.50		1			1	1							137,50		GR WARRANTED ALONG ENTRY RT SIZE NEW
4.5	13+12.94	17+7	LT	475.00			17+77.94	13+00.00	10	13		- 90		1		1	1							137.50		OR WARRANTED ALONG ENTIRE LT SIDE BET
d.	19+84.06	23+0 5	RT	325.00			19+84.06	21+50.00	10	13		50		1		1	1							137.50		
- 4.2	19194.06	22+8 6	LT	380.08			21+90.00	19+84.06	10	13	.50		1				1							137.50		
d.	16+00.00		RT						10	13	.50		1					1								REQUESTED BY TRAFFIC CONTROL
4.		21 00	ILL						10	13		- 90		1				1								REQUESTED BY TRAFFIC CONTR
-DET-	14+44,19	7 4.15	BT		\$75.00		15+00.00	23+00.00	6	8		- 50	1	1				2								REMOVE -DET- TEMP GR
-DET-	15+87.50	58.00	LT		562,50		20+50.00	17+00.00	6	8	.50	- 50	1	1				2								REMOVE -DET- TEMP GR
SUITOTAL:				1,575.0	1,437,5											4	4									
									_										1							
	RS DEDUCTO					-															-					
GRAD-5			50.00	-200.00												-	_									
TYPE III	4		18,75	-75.00										· ·		-					-	_				
TEMP GRAU	4		50,08		-200.00														_							
ANCHOR TO	TALS			-275.00	-300.00																					
														_		-			_		_		_			1
GRAND TOT:	AL:			1,300.00 LF	1,237.501.F											4	4	- 6					5	36.80 LF		
																-		-			_					
\$4T:				1,380.00 LF	1,237.50 LF											4	4	6	_					50.00 L.F		
																					_					
ADDITIONAL	GUARDRAIL POST			5.EA					_					_			_									
									_	_				_												

Session 3

3-66

Quantity

Summary

Sheet
Quantity Summary Sheet – blow-up

3-67

Need to re-establish tension in any altered guardrail – include in plan sheets

Placement of GRAU (GREU) must abide by standard application criteria (Deflection and LON)

Review Learning Outcomes

- Understand how barriers are tested for crashworthiness
- Identify common barrier systems
- Explain how these barrier systems function
- Define the key components of a transition design

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 4:

Testing Requirements and Performance Characteristics of End Treatments and Impact Attenuators

Session 4 Learning Outcomes

At the end of this session, you will be able to:

- Understand how end treatments and impact attenuators are tested for crashworthiness
- Identify common end treatments and impact attenuators
- Understand how these systems function
- Choose the appropriate system for a specific site

Guardrail End Treatments

A barrier end treatment must serve two functions:

- Provide the necessary TENSION of the guardrail system for downstream impacts
- Be crashworthy when impacted end-on.

Cable Anchor Terminal – MASH

- 2 Design Tested
- Both have a strut between last 2 posts

Eligibility Letter B-256 MwRSF Design 12'- 6" rail Rail extends past last post

TxDOT Design

9'- 4 $\frac{1}{2}$ " rail element

Rail ends at last post

Cable Anchor Terminal - Tension

NC Cable Anchor – Not tested

TRAILING END UNIT ASSEMBLY

C.A.T.-1 SYSTEM

NCDOT

Guardrail Cable Anchor Terminal

Impacted at 6th post from the end

Vehicle deflected up to 10' behind the barrier

Session 4

Guardrail Cable Anchor Terminal Test Analysis

Cable Guiderail terminal - LTC

Cable Guiderail terminal - HTC

PRE-ASSESSMENT PHOTO

Cable Guiderail Anchor Unit Placement

PRE-ASSESSMENT PHOTO

Session 4

End Treatment MASH Test Matrix

 * Significant Change
 * Small Car 1100C (2420 #)
 BLON – Beginning Length of Need

 * Pickup Truck 2270P (5000 #)
 Length of Need

Session 4

DOT

Guardrail End Treatments

Types of End Treatments

- Buried-in-Cut (Detail, not in Standards)
- Tangent terminals terminal is parallel to the roadway or has a straight flare with a "slight" offset; all are Energy-absorbing
- Flared terminals terminal is placed on a flare to the roadway typically 3' or 4'; both non-energy- and energy-absorbing

Buried in Cut End Treatment

- Key design considerations:
 - For slopes steeper than 10:1, keep the height of the w-beam rail constant relative to the roadway grade until the barrier crosses the ditch flow line (but a max height of 47")
 - Use a flare rate, either 13:1 or appropriate for the design speed,
 - Add a w-beam rubrail when the distance between the bottom of the w-beam rail and the ground exceeds ~19",
 - Use an anchor of steel posts capable of developing the full tensile strength of the w-beam rail and <u>buried</u> 1' below ground

MASH Buried in Cut End Treatment

Buried in Cut (350 - to be Updated)

BIC Looking Across Roadway

Session 4

Single Rail BIC

NAMES OF TAXABLE PARTY.

Session 4

BIC Considerations – 10:1 Slope for Single

BIC Considerations - LON

Any concerns with this installation?

Session 4

PRE-ASSESSMENT PHOTO

End Treatments - Terminology

CAT-1 – Cable Anchor Terminal – non-crashworthy device to develop Tension where there is no opportunity for end-on impacts

(AT-1 – Anchor Terminal – no cable)

GREA – Guardrail End Anchor – crashworthy Pre-MASH devices

GREU – Guardrail End Unit – crashworthy MASH approved devices

End Treatments

Flared End Treatments

Historically used, most recently the SRT and FLEAT

Business »									
Approved Pro	ducts List								
Product ID (ex. NPYY->	oxxx):								
Company N	lame:								
Product N	lame:								
Product G	roup: Guardrail and	Delineators (862)(1088)		~					
Product Cate	gory: End Treatmen	ts 🗸							
Product Si	tatus:	~							
<u>Product ID</u> Plant ID	<u>Company Name</u>	Product Group	Pr	oduct Category	Product Name	Model Number	Product Status	Description	
<u>NP11-5773</u>	Road Systems, Inc.	Guardrail and Delineators ((862)(1088) En	d Treatments	MFLEAT		Approved	MASH tested,	Guardrail End Terminal

https://apps.ncdot.gov/vendor/approvedproducts/

Session 4

Flared End Treatment: Energy Absorbing

MFLEAT MASH Version of FLEAT (MASH 16)

Curls the rail (by kinking) tightly towards the roadway.

Session 4

- Steel post system; BLON at 4th Post
- TL-3 at 39' 7" straight flared length. 3-ft. offset.
- Cable-anchored, compression system

BLON – Beginning Length of Need

Ref: FHWA Eligibility Letter CC-143 dated 04/10/19

MASH MFLEAT

Flared End Treatment: Non-energy-Absorbing

- MASH SRT (Slotted Rail Terminal)
 - W-Beam rails on a straight line and horizontal slots in rail

Session 4

- Offset 4'; 31" Height
- 37'-6" long, BLON at Post 4
- Cable-anchored system
 Not currently on APL

Ref: FHWA Eligibility Letter CC-140 dated 12/19/17

DOT

MASH Test 3-31: SRT

Because of the non-energy absorption, no hazard should exist within 150' downstream of post #1

NOT GOOD!!!!! NCDOT

Session 4

Flared End Treatments on Flared Standard Run

The flare of the end treatment is measured from a line parallel to the ROADWAY:

For Energy Absorbing (MFLEAT) which has a 13:1 flare, there may need to be a "kink" either toward or away from the roadway, depending on the flare of the standard guardrail

For the SRT MASH, the offsets are measured from a line parallel to the roadway.

NCDOT guidance is to provide 25' of parallel guardrail in advance of any end treatment requiring a kink.

Flared End Treatment on Flared Standard Run **MFLEAT - Schematic**

Guardrail

Flared End Treatments on Flared Standard Run SRT MASH - Schematic

Flared End Treatment Selection

- The contractor may choose any system on the Approved Product List meeting the design requirements
 - One is energy absorbing (currently MFLEAT)
 - One could be non-energy absorbing (SRT)

What is **important** is to understand how the system works –a **FLARED** system should only be allowed if criteria have been met (LON and grading)

Tangent End Treatment

		1100								
	NCDOT NORTH CAROLINA DEPARTMENT OF TRANSPORTATION Connecting people, products, and places safely and efficiently with customer focus, accountability and environmental sensitivity to enhance the economy and vitality of North Carolina.									
	to en	nance the econo	omy and vitality of No	orth Carolina.	Business	DMV	Newsroom	Prog	rams	
	Approved Resources Product Listing Seeds Producer/Supplier		Business »	d Produc	te liet					
			Approved Products List							
			Product ID (ex. NPYY-xxxx): Company Name:							
				Product Name:						
			F	Product Group:					•	
	Technician Certification		Proc	duct Category:	End Treatmer	nts, Type MAS	H-16		•	
	Minimum Sampling Guide		P	roduct Status:			•			
								Search	Reset	
oduct ID Pla	ant ID Company Name	Product Grow	n Product Category	Product Name	Model Number	Droduct Status	Description			
			<u>p rioduce category</u>	Product Name	Model Number	Floudet Status	Description			
P17-7819	Trinity Highway	Guardrail and Delineators	End Treatments,	SoftStop Mash		Approved	MASH tested;All steel g	alvanized tange	nt end termi	nal for u
17 7015	Products	(862)(1088)	Type MASH-16	End Terminal		Approved	31" W-Beam system.			
		Guardrail and								
P17-7851	Road Systems,	Delineators	End Treatments,	MSKT		Approved	MASH tested;Guardrail	End Terminal		
	Inc.	(862)(1088)	Type MASH-16							
							The SGET (SPIG Gatino	End Terminal)	is a gating g	uardrail
<u>18-8257</u>	CDIC Industry	Guardrail and	Fed Treatments			terminal system in whi	· · ·			
	SPIG Industry, LLC	Delineators	End Treatments, Type MASH-16	' SGET	Approved		head to move down the	e guardrail and o	lissipate the	energy
	(862)(1088)		Type MASH-10				impact. The SGET syste	am also deflects	vahiclas has	k onto
		(862)(1088)					impact. The SGET syste	eni also denects	venicies bac	K UNLU I

.....

Tangent End Treatment: Energy Absorbing

- MSKT MASH Version of SKT (MASH 16)
 - Kinks Guardrail when hit head-on or at a shallow angle
 - Steel post system; BLON at 3rd Post
 - TL-3 at 47' long; attachment to 31" Guardrail
 - Cable-anchored system, Compression system

MASH MSKT

Tangent End Treatment: Energy Absorbing

- Soft Stop (MASH 16)
 - Impact head slides along panels, crushing them vertically, absorbing the energy of the vehicle in shallow angle impacts - works in tension
 - TL-3 at 51' long; BLON at 16'-6"; 31" only

MASH Soft Stop

MASH SGET

ίiπ.

Design Speed	Minimum Length of Steel Beam Guardrail					
	Between Structural Anchor and GREU					
≤60 mph	12.5 feet					
> 60 mph (Interstates, Freeways, Major	25 feet					
Arterials						

Session 4

4-42

MASH SGET - Test 3-31

Tangent End Treatment: Energy Absorbing

- MAX-Tension (MASH 16)
 - The MAX system utilizes tensioned cables, telescoping panels, and a cutting tooth to absorb the kinetic energy and safely contain or redirect impacting – works primarily in tension

Session 4

4-44

TL-3 at 50' long; BLON at 9'-4 ¹/₂"; 31" only

MASH MAX-Tension

Tangent End Treatments – End Offset Proposed

4.10.9 Guardrail Anchor Units

The following are commonly used anchor units with a brief description.

<u>Guardrail End Unit – Test Level 2 and Test Level 3</u> (<u>GREU-TL-2 and TL-3</u>) - the GREU – TL-2 and TL-3 are tangential end units. These units will be flared over the last 50 feet to provide a 1-foot offset.

Tangent End Treatments on Flared Standard Run

The offset of the end treatment is measured from a line parallel to the ROADWAY:

If the standard flare is 25:1 or flatter, the end treatment may be placed on the standard flare line extended

If the standard flare is sharper than 25:1, a kink in the run must be provided so the end treatment is no sharper than 25:1

NCDOT guidance is to provide 25' of parallel guardrail in advance of any end treatment requiring a kink.

Tangent End Treatments on Flared Standard Run Schematic

End Treatment Grading

- Special grading requirements for guardrail end treatments:
 - Flat terrain (10:1 or flatter) is required in ADVANCE of all end treatments so that vehicles are relatively stable on approach
 - Flat grading must extend *behind* post 1 (ADJACENT) so vehicle is stable at impact <u>and</u> stub height criteria is satisfied

Session 4

Ref: FHWA Memorandum, Roadside Safety Hardware, May 26, 2015 with attachment and Ref: AASHTO Roadside Design Guide, 4th Edition, Section 8.3.3.

Stub Height Criteria

RDG Figure 4.1

Ref: AASHTO Roadside Design Guide, 4th Edition – Figure 4.1

End Treatment Grading Requirements

- Runout Distance Grading refers to the area into which a vehicle may travel after impacting a terminal ahead of its length-of-need point.
 - The lateral runout distance directly behind a terminal ideally should be at least as wide as the roadside clear distance immediately upstream of terminal.
 - The minimum recovery obstacle-free area behind and beyond a terminal should be approximately 75 ft. long.

Ref: AASHTO Roadside Design Guide, 4th Edition, Section 8.3.3.

a – Extend out to clear zone when practical; if not, it should be at least as wide as area upstream of the end treatment.

Session 4

b – LON Required; when LON cannot be provided due to site conditions, a minimum of 75' from post 1 may be acceptable

Flared End Treatment Grading - AASHTO

Figure 8-2. Grading for Flared Guardrail Terminal

End Treatments (Anchorages, Terminals, and Crash Cushions) 8-5

Must have this full grading if a flared end treatment is used

Session 4

4-53

Tangent End Treatment Grading - AASHTO

Note: The preferred grading layout should be used when practical. However, if necessary because of site limitations, the alternative grading layout may be used when upgrading an existing terminal.

Figure 8-3. Grading for Tangent Guardrail Terminal

PRE-ASSESSMENT PHOTO

.....

4-55

Tangent End Treatment Grading - NCDOT

Need special Borrow bid item for 3R projects

Need Special Provision for Density

PRE-ASSESSMENT PHOTO

No Stub problem, but could be better

Substandard Grading – DOCUMENT

Thing to Remember about End Treatments

Non-Energy Absorbing End Treatments will not shield objects directly behind and within End Treatment limits

4-59

Thing to Remember about End Treatments

Even Energy Absorbing End Treatment will not shield objects directly behind and within End Treatment limits

Suggested FHWA End Treatment Selection Flow Chart

EXISTING END TREATMENTS

Session 4

4-62

Tangent Guardrail End Treatment Energy Absorbing

- SKT 350 (Sequential Kinking Terminal)(NCHRP 350)
 - Kinks panels when hit head-on or at a shallow angle
 - Wood or Steel post system (many options)
 - TL-3 at 50' long; BLON at 3rd Post
 - Cable-anchored, Compression system

Ref: FHWA Eligibility Letter CC-88 dated 3/8/05

Tangent Guardrail End Treatment Energy Absorbing

Session 4

- ET Plus (Guardrail Extruder Terminal)(NCHRP 350)
 - Flattens the rail element when hit head-on
 - Weakened wood or steel posts (several options available)
 - 50' long; attaches to either height w-beam system
 - BLON at 3rd Post

DOT

 Cable-anchored, compression system

Ref: FHWA Eligibility Letter CC-12Q dated 3/15/10

Non-crashworthy End Treatment Blunt End

Non-crashworthy End Treatment

Turndown

Turndown

P. Car and

Non-crashworthy End Treatment BCT Terminal

Breakaway Cable Terminal (BCT) NCHRP 230

Session 4

- W-Beam rail with a parabolic curve and 4-ft offset.
- No impact head or ground strut between the two end posts.
- Only two breakaway posts.
- Rail bolted to all posts.

DOT

For Identification Only

4-68

Non-crashworthy End Treatment BCT Terminal

Failed Test! Causes spearing

Guardrail End Treatments: Non-energy Absorbing – For Identification Only

Session 4

- MELT Modified Eccentric Loader Terminal
 - W-Beam rail with an accentuated parabolic curve and 4-ft offset.
 - Strut between the steel tubes foundation of the two end posts
 - 37'-6" long with 8 breakaway posts; BLON at Post #3.
 - No rail-to-post bolts except at posts 1 and 8 and beyond.

For Identification Only

(NCHRP 350 TL-2)

4-70
Guardrail End Treatments: W-Beam Median

Only one MASH gating, double sided end treatment available on the market

Session 4

No longer on NCDOT APL

Impact Attenuator

Crash test with blunt end:

Impact Attenuator

Crash test with ramped end:

Impact Attenuator Theory

Harder back section to bring a pick-up truck to a controlled stop

Impact Attenuator, Sacrificial - Water Filled

Water-filled Barriers

Absorb M (MASH) / Sled(MASH) / ACZ 350 / TRITON CET

- Individual crash cushion designs vary by manufacturer, but they all function in a similar manner.
- Vehicles impacting the nose at an angle will not be redirected.
- No appreciable re-directive capability under most impact conditions.
- Typically used in work zones to shield temporary concrete barrier.

Impact Attenuator, Sacrificial - Water Filled

			Approved	Product	ts List					
			Product ID (ex.	NPYY-xxxx):						
			Com	pany Name:						
			Pro	oduct Name:						
			Pro	oduct Group:						
			Produ	ict Category:	WZTC - Category	III		•		
<u>5771</u>		Lindsay Transportation Solutions	Work Zone Traffic Control	WZTC - Catego III	Absorb 350		Approved for Provisional Use	on NCDOT project.* The	teve Kite (919-814-4937) p ABSORB 350 is a non-redir cushion that has been succ 350 TL-2&3.	rective,
<u>884</u>		TrafFix Devices Inc.	s, Work Zone Traffic Control	WZTC - Categ III	ory SLED	Series 45044	Approved		Cushion w/Galvanized Stee 350 for Test Level 1,2or3.U on.	
<u>335</u>		Trinity Highway Products	Work Zone Traffic Control	WZTC - Catego III	ACZ-350 Water Filled Crash Cushion	ACZ-350	Approved for Provisional Use	The ACZ-350 is a narrow, attenuator	non-redirecting TL-2 and T	FL-3 impact
106	GR10	Energy Absorption Systems, Inc.	Work Zone Traffic Control	WZTC - Catego III	ry Triton Barrier	Triton Barrier	Approved	Performance meets the F TL-3 kit) standard for lon	highly portable, water-filled FHWA NCHRP 350 TL-2 or 1 ngitudinal re-directive barrie as its own end treatment.	TL-3 (with

Session 4

NP11

NP16-7

NP99-

4-76

Impact Attenuator, Sacrificial - Water Filled

Absorb M (MASH)

Session 4

ACZ-350

TRITON barrier CET

Water Filled

Impact Attenuator, Sacrificial – Sand Barrel

Non-Redirective and Gating

- Individual barrel designs vary in shape by manufacturer, but they all function the same
- Arrays of sand barrels may be designed to shield any shape hazard
- Impacting vehicles will not be redirected.
- Since no re-directive capability, the corner of the hazard must be reasonably shielded.

Impact Attenuator, Sacrificial – Sand Barrel

Sand Barrels:

Energite

TrafFix Big Sandy (MASH)

Not Normally Used

CrashGard (MASH)

Session 4

4-80

Sand Barrels – Good Application

Sand-Filled Array

Impact Attenuators, Non-Gating

Non-gating as follows:

- Contains and redirects vehicles impacting along the sides of the device essentially its entire length
- Contains vehicles impacting the nose either headon or at a 15° angle.
- Approved for TL-2 (350) & TL-3 systems.
- Designed to shield a point hazard; either attached or stand alone.

Impact Attenuators, Non-Gating

Approved Products List

Product ID (ex. NPYY-xxxx):	
Company Name:	
Product Name:	
Product Group:	T
Product Category:	Impact Attenuators, Non-Gating

<u>NP19-8389</u>	Lindsay Transportation Solutions	Guardrail and Delineators (862)(1088)	Impact Attenuators, Non- Gating	Universal TAU- M	Approved	MASH compliant re-directive, non-gating anchored, partially reusable compression-based crash cushion
				IVIAOD		

NCHRP 350 - Allowed if Conditions Mandate

<u>NP02-1527</u>	Lindsay Transportation Solutions	Guardrail and Delineators (862)(1088)	Impact Attenuators, Non- Gating	Universal TAU- II		Approved	The Universal TAU-II is a redirective, non-gating crash cushion. The system is available in lengths and capacities for both low and high speed applications
<u>NP03-4111</u>	Trinity Highway Products	Guardrail and Delineators (862)(1088)	Impact Attenuators, Non- Gating	WIDE TRACC	N/A	Approved for Provisional Use	the WideTRACC is test level 3 crash cushion and is avaliable in varying lengths and widths. can be configured for any appropriate width application.

Impact Attenuators, Non-Gating

- ➤ TAU-M (MASH) and TAU IIR Systems (NCHRP 350)
 - Can be attached directly to a W-beam or Thrie-beam median barrier as well as to a concrete safety shape.
 - Designed to attach to a median barrier.
 - Common set of parts for 36" to 102" widths in 6" increments (350)
 - Consists of Thrie-beam panels, expendable (MASH) or selfrestoring (R) (350) absorbing cartridges, steel diaphragms and two cables at the bottom to provide redirection.

Impact Attenuators, Non-Gating - Typical

QuadGuard M10 Tests CC-112

Impact Attenuators, Life Cycle

Approved Products List

Product ID (ex. NPYY-xxxx):			
Company Name:			
Product Name:			
Product Group:			'
Product Category:	Impact Attenuators, Life	Cycle	•

				MACL				
<u>NP16-7403</u>	Energy Absorption Systems, Inc.	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	Quadguard Elite		Approved for Provisional Use	**Contact NCDOT Mobility and Safety Fi use at 919-773-2800**The QuadGuard added value of reusable cylinders for ap average impact frequency. After a typica system is	Elite System offers the plications with above
<u>NP16-7404</u>	Hill and Smith	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	Smart Cushion Innovations Crash Cushion	SCI100GM	Approved	Test Level III Crash Attenuator	MASH
<u>NP16-7405</u>	Hill and Smith	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	Smart Cushion Innovations Crash Cushion	SCI70GM	Approved	Test Level II Crash Attenuator	
<u>NP16-7406</u>	TrafFix Devices, Inc.	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	Compressor System Crash Cushion	55000 Series	Approved	Low Maintenance, Severe-Duty, Self-Res Impact Attenuator. NCHRP-350 approve repeated impacts with no need for repai directional or Bi-Directional applications	ed as TL-3. Designed for ir. For use in Uni-

Session 4

4-87

Impact Attenuators, Life Cycle

- SCI Smart Cushion (MASH)
 - Variable Reaction Force
 - Re-usable with minimal component replacement
 - Needs repair before next hit

Example – Low Cost

State .

Impact Attenuators, Life Cycle

Session 4

- QuadGuard Elite (MASH)
 - Uses High Density Polyethylene cylinders to absorb energy
 - Essentially for use in locations where a high number of hits is anticipated.

4-90

REF: FHWA Eligibility Letter CC-57E dated 12/18/15

Example - Self Restoring

Very Appropriate Use

Review Learning Outcomes

- Understand how end treatments and impact attenuators are tested for crashworthiness
- Identify common end treatments and impact attenuators
- Understand how these systems function
- Choose the appropriate system for a specific site

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 5: Design Principles

Session 5

5-1

Session 5 Learning Outcomes

At the end of this session, you will be able to:

Understand the design principles affecting an optimal barrier installation.

Order of Preference - NCDOT

4.10 Traffic Barriers4.10.1 General Considerations

The preferred method of addressing roadside hazards is as follows:

- 1. Remove the hazard;
- 2. Remove embankment hazard (flatten slopes);
- 3. Shift hazard away from traffic;
- 4. Reduce the impact severity by using breakaway posts;
- 5. Protect the hazard;
- 6. Delineate the hazard so motorists are aware of the hazard.

Barriers Must Be Less of a Hazard

Session 5

5-4

Guardrail Placement

Place AS FAR AWAY as Possible

without affecting function

Barrier Design Principles

- 1. Deflection
- 2. Slope in Front of Barrier
- 3. Guardrail and Curb
- 4. Soil Backing for Fill Locations
- 5. Flare Rate

Principle 1: Deflection

Adequate room must be left behind the barrier to allow for lateral deflection in an impact.

- If the barrier is shielding a vertical rigid object, the distance between the barrier and the object should be sufficient to avoid the vehicle impacting or snagging on the object.
- Note that, even for rigid barriers with no lateral deflection, large vehicles may roll behind the top of the barrier even if the barrier itself does not deflect.

Figure 5-33. Recommended Barrier Placement for Optimum Performance

Ref: AASHTO ROADSIDE DESIGN GUIDE, 4th EDITION - Figure 5-33

Deflection

Deflection Distance - NCDOT

NOTE: WHEN OFFSET DISTANCE FROM FACE OF OBSTRUCTION TO FACE OF GUARDRAIL IS BETWEEN 3'-6" AND 5'-6", BEGIN 3'-1½" POST SPACING AT A POINT 25' BEFORE REACHING THE OBSTRUCTION AND CARRY THROUGHOUT ITS LENGTH. IF THE OFFSET IS LESS THAN 3'-6" USE CONCRETE BARRIER.

DETAIL OF RIGHT SIDE GUARDRAIL AT UNDERPASS

Session 5

Ref: NCDOT Standard Drawing 862.01, Sht 1

CDOT

Quarter Post Spacing

Successfully tested to MASH

Deflection distance = 19"; therefore offset from face of rail is 3'

Must start stiffening at 50' before hard point: 25' of half post guardrail; 25' of quarter post guardrail

Principle 2: Slope in Front of Barrier

Any barrier may be placed anywhere on a 10H:1V or flatter slope.

Principle 2: Slope in Front of Barrier

NCHRP 350 TL-3 31" on 8:1 Slope

Vehicle is contained and redirected but shows instability

Slope in Front of Barrier

Barrier in Sloped Median - Old System (29") ONLY -

Slope in Front of Cable Barrier

- Cable barrier may be placed anywhere on a 10:1 or flatter slope.
- Cable barrier may be placed on slopes of 6:1, but not in the area from 1 ft. to 8 ft. from the ditch bottom.

NCDOT Slope/Swale Guidance - LTC

Session 5

Location of Cable in Swales

MASH 2016 requires testing with a mid-sized vehicle because of this problem (NC experience)

CABLE SHOULD NOT BE PLACED BETWEEN 1' AND 8' BEYOND THE BOTTOM OF A DITCH

Session 5

Ref: AASHTO ROADSIDE DESIGN GUIDE, 4th EDITION - 6.6.1.1, Pg. 6-18

PRE-ASSESSMENT PHOTO

Session 5

5-20

ЕХ 466

allen and a superior and a superior of the

Barrier in Sloped Median

Session 5

Barrier in a Curved Median

Which Side of the Median Should the Cable Barrier be Placed?

Session 5

Barrier in a Curved Median

Principle 3: Guardrail and Curbs

PRE-ASSESSMENT PHOTO

6" Curb not acceptable for old 29" System on HS

Session 5

Guardrail and Curbs

- Curbs may function to channelize traffic, to control drainage, improve delineation, control access, and reduce erosion.
- Curbs are not adequate to prevent a vehicle from leaving the roadway; they are not a barrier.
- Use of any guardrail/curb combination where high-speed, high-angle impacts are likely should be discouraged.

Guardrail and Curbs - 29"

NCDOT Guardrail and Curbs

Session 5

Ref: NCDOT Standard Drawings, 862.01 Sht. 11

ICDOT

31" and Curbs

Successfully tested to MASH placed 6" behind a 6" high curb at TL-3

Session 5

MASH TL-3 31" Placed 6" behind 6" high Curb

31" and Curbs

 The 31" was tested with a 6" curb, 8' in front of the rail at MASH TL-3
unsuccessful

End Treatments and Curbs

As stated previously, the GRAU-350 is a tangential end unit. However, these units will be flared over the last 50 feet to provide a 1-foot offset. This minimal flare allows the terminal to be offset so that no component of the unit extends beyond the face of the guardrail. The tangential end unit should not be flared greater than a 50:1 flare rate. No curb is allowed within the limits of this unit.

End Treatments and Curbs

CURRENTLY UNDER STUDY – DO NOT BURY BEARING PLATE

2" maximum height recommended

End Treatments and Curbs - NCDOT

Ref: NCDOT Standard Drawings, 862.01 Sht. 11

Careful with BCA Terminal Anchor – Don't let Bearing Plate be buried

MASH TL-2 31" 6 ft. behind curb

Principle 4: Soil Backing For Fill Locations

Soil Backing Recommendation

- 1. Slope can be as steep as 2:1 with 2-ft. backing in strong soil with 6 ft. posts.
- Backing can be less than 2 ft. with 2:1 slope in strong soil with 7 ft. posts. NCHRP 350 requires half post spacing – ONLY applies to 29" system

Session 5

Ref: AASHTO Roadside Design Guide, 4th Edition – Figure 5.33, Pg. 5-41

Soil Backing – NCDOT

Soil Backing – NCDOT

Soil Backing – NCDOT

31" with Posts on a 2:1 Slope

Session 5

31" with face of rail at slope break point of2:1 slope

Posts

- 8' long W6x9 posts tested
- Not recommended with Wood posts at this time
- 6'-3" post spacing

Offset Blocks

- 8" Offset block tested
- Not recommended without offset block at this time

31" with Posts on a 2:1 Slope

MASH Testing of MGS adjacent to a 2:1 Slope 8" blockout 8' long posts at 6'-3" spacing

Session 5

Working Width – 55.2" Eligibility Letter B-261

Principle 5: Flare Rate

Flare Rate

Flared barriers are those that are not parallel to the edge of the traveled way. They are used to:

- Locate end treatments farther from the roadway.
- Lessen driver reaction to a roadside obstacle.
- Reduce total length of rail needed.
- Reduce nuisance hits.
- When tying to a bridge rail from a farther offset (in advance of transition)

Flare Rate

Trade offs and restrictions of flared barriers:

- Flare increases the angle at which the barrier can be hit.
- Flare may increase the angle of redirection after an impact.
- Flared barriers can only be placed on 10:1 or flatter slopes.
- Maximum flare rate varies with design speed NCDOT flare rate typically 50:1

Tangent End Treatments on Flared Standard Run - Repeat

The offset of the end treatment is measured from a line parallel to the ROADWAY:

If the standard flare is 25:1 or flatter, the end treatment may be placed on the standard flare line extended

If the standard flare is sharper than 25:1, a kink in the run must be provided so the end treatment is no sharper than 25:1

NCDOT guidance is to provide 25' of parallel guardrail in advance of any end treatment requiring a kink.

Suggested Flare Rates

Table 5-9. Suggested Flare Rates for Barrier Design

Design Speed		Flare Rate for Barrier Inside	Flare Rate for Barrier at or Beyond Shy Line	
km/h	[mph]	Shy Line	Rigid Barrier	Semi -Rigid Barrier
110	[70]	30:1	20:1	15:1
100	[60]	26:1	18:1	14:1
90	[55]	24:1	16:1	12:1
80	[50]	21:1	14:1	11:1
70	[45]	18:1	12:1	10:1
60	[40]	16:1	10:1	8:1
50	[30]	13:1	8:1	7:1

Notes:

A = Suggested maximum flare rate for rigid barrier system.

B = Suggested maximum flare rate for semi-rigid barrier system.

The MGS has been tested in accordance with NCHRP Report 350 TL-3 at 5:1 flare.

Flatter flare rates for the MGS installations also are acceptable. The MGS should be installed using the flare rates shown or flatter for semi-rigid barriers beyond the shy line when installed in rock formations.

Example of Benefit of Flare

PRE-ASSESSMENT PHOTO

THE OWNER WATER OF THE OWNER OWNE

Session 5

Review Learning Outcomes

Understand the design principles affecting an optimal barrier installation.

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 6: Length of Need and Special Considerations

Session 6 Learning Outcomes

At the end of this session, you will be able to:

- Define the Length of Need and apply the design principles for an optimal installation
- Modify guardrail for special situations

Order of Preference - NCDOT

4.10 Traffic Barriers4.10.1 General Considerations

The preferred method of addressing roadside hazards is as follows:

- 1. Remove the hazard;
- 2. Remove embankment hazard (flatten slopes);
- 3. Shift hazard away from traffic;
- 4. Reduce the impact severity by using breakaway posts;
- 5. Protect the hazard;
- 6. Delineate the hazard so motorists are aware of the hazard.

Length of Need (LON) Definition

AASHTO

The length of effective barrier needed IN ADVANCE OF the hazard to intercept and redirect an encroaching vehicle.

Length of Need (LON) Definition

NCDOT

The length of effective barrier in advance of the obstacle **NOT TO INCLUDE ANY** of the GREU.

Runout Lengths - NCDOT

Proposed - replace with AASHTO RDG values

AL SHOULDER WIDTH (WIDTH OF SHOULDER FROM EDGE OF TRAVEL TO FACE OF GUARDRAIL)

Session 6

DETAIL 3-2A

Runout Lengths - AASHTO

Table 5-10(b). Suggested Runout Lengths for Barrier Design (U.S. Customary Units)

Design Speed (mph)	Runout Length (L _R) Given Traffic Volume (ADT) (ft)				
	Over 10,000	5,000 to 10,000	1,000 to 5,000	Under 1,000	
80	470	430	380	330	
70	360	330	290	250	
60	300	250	210	200	
50	230	190	160	150	
40	160	130	110	100	
30	110	90	80	70	

Session 6

Ref: AASHTO ROADSIDE DESIGN GUIDE, 4th EDITION - TABLE 5.10, Pg. 5-50

DOT

LON Design Procedure for Approach Barrier Layout

Ref: AASHTO Roadside Design Guide, 4th Edition, Figure 5.39, Pg. 5-49

Length of Need – AASHTO

- Calculating the length of need (X) for straight or nearly straight sections of roadway:
 - For <u>flared</u> guardrail installations:

$$X = \frac{L_{A} + (b/a) (L_{1}) - L_{2}}{(b/a) + (L_{A}/L_{R})}$$

Session 6

• For parallel guardrail installations:

$$X = \frac{L_A - L_2}{L_A/L_R}$$

Ref: AASHTO Roadside Design Guide, 4th Edition, Equation 5-1 and 5-2, Pg 5-51

Length of Need – NCDOT

Length of Need – NCDOT

Calculating the length of need (L) for straight or nearly straight sections of roadway (parallel installation):

$$L = \frac{LH - (N + 0.75)}{LH/LR} + 12.50$$

The formulas and details are derived from Chapter 5 in the Roadside Design Guide.

Length of Need for Bridge Approach NCDOT

Session 6

Length of Need for Bridge Approach NCDOT – Dual Bridges

THE DESIGN LAYOUT FOR LENGTHS SHOWN ON THIS STANDARD ARE MINIMUM DESIGN LENGTHS.

Session 6

NCDOT

Length of Need for Bridge Approach NCDOT – with Cable Barrier

THE DESIGN LAYOUT FOR LENGTHS SHOWN ON THIS STANDARD ARE MINIMUM DESIGN LENGTHS.

Session 6

NCDOT

Length of Need for Fill Slope NCDOT

"L" OR LENGTH OF NEED ON THE APPROACH SIDE OF THE GUARDRAIL FOR A FILL SLOPE WARRANT FOR ANY CLASSIFICATION OF ROADWAY

DESIGN SPEED (MPH)	70	60	50	40
*L (FT.)	150′	125'	100′	75'

These are quite short compared to AASHTO

DETAIL 3 - 2C

LON Design for Opposing Traffic

Session 6

6-17

Ref: AASHTO Roadside Design Guide, 4th Edition, Figure 5.42, Pg. 5-54

Length of Need on the Outside of a Horizontal Curve

REV. 01/02/02

State LINE State LINE

Length of Need on the Inside of a Horizontal Curve

Energy–Absorbing terminal on a curve

Energy-Absorbing terminals must be installed in a straight line over the length of the terminal proper. This may require the barrier to be extended in advance of the curve.

Session 6

Step 1: Identify the Hazard

Step 2: Define the Point of Departure

Step 3: Intersect the Hypotenuse

Session 6

EXIT

PRE-ASSESSMENT PHOTO

Quick Field Check of LON

- 1. Stand on roadway edgeline opposite the upstream edge of the hazard.
- 2. Pace upstream along edgeline appropriate runout length (based on speed of roadway and traffic volume).
- 3. Turn and look at far lateral edge of hazard.
- 4. If planned (or existing) guardrail run intercepts this line of sight, it satisfies basic design length of need.
- 5. Check for ALL hazards that should be shielded in this area
- 6. Check for better terminal location by extending barrier a short distance (especially on curves!!!)

Length of Need Field Check

Procedure

- Identify upstream face of hazard
- Identify back of hazard D limit to 30'
- Walk upstream along the white edge line, beginning at the upstream side of the hazard, 300'* for high speed, or 200'* for low speed (45 mph or less)
- Sight from this position to the upstream face, back edge of hazard (limited to 30')
- End of terminal should intercept line of sight (± ≈30')

Downstream Termination One Direction Traffic

An anchor (CAT-1) plus 25' of rail must be ADDED at the end

Guardrail Placement

Place as far from traffic as practical (without affecting performance)

Guardrail Placement in Special Situations

- Guardrail Placement at Intersections
- Long Span (Omitted Post{s})
- Gaps between runs of barrier
- Extra Offset Blocks
- Leaveouts for Posts in Structural Pavement

Session 6

Guardrail Post in Rock

Guardrail Placement at Intersections

Guardrail Placement at Intersections

PRE-ASSESSMENT PHOTO

Session 6

Guardrail Placement at Driveways

Ref: NCDOT Standard 862.01, Sht 9

DIVIDED HIGHWAY

NOTE: USE DETAIL 3 & 4 WHENEVER 20' OR LARGER RADIUS CANNOT BE UTILIZED.

Session 6

MAINTAIN CLEAR SIGHT DISTANCE.

GUARDRAIL END UNIT

TYPE TL-3 or TL-2

NCDOT

GUARDRAIL TREATMENT AT DRIVEWAYS

GUARDRAIL END UNIT

TYPE TL-3 or TL-2

TxDOT MASH TL-3 Short Radius

On-going Research by Pool Fund – No Eligibility Letter

TxDOT MASH TL-3 Short Radius

NCDOT Investigating further developments

MASH TL-3 Short Radius - NCHRP

Test 3-33 on a 2:1 Slope at 50 mph ONLY

Omitting posts – old 29" guardrail

31" – Omitting 3 posts

Session 6

31" – Omitting 3 posts

MGS - Omitting 1 post -

Future??

- No post modifications
- Can be used with wood or steel posts
- Can be used with 8" and 12" blockouts but not with the non-blocked system

MGS - Omitting 1 post – Future??

Working Width 50.1" Limit 1 per 50'

Openings in Barriers

Check with maintenance, ROW, etc

Session 6

Openings in Barriers - NCDOT

Proposed – Same criteria (4.10.2.2)

ROADWAY DESIGN MANUAL

PART 1

DETERMINING GUARDRAIL LENGTHS OF NEED 3-2

NOTE: A space of less than 300' should not be left between guardrail installations. If less than 300' remains between installations, the guardrail should be extended through the area.

Again, be sure there are no conditions that would preclude closure

Extra Offset Blocks – National Guidance

- Two Offset blocks (up to 16" deep) may be used at any time, for any number of posts.
- Three Offset blocks may be used at one or two posts in a section of guardrail.

Session 6

Ref: AASHTO Roadside Design Guide – 3rd Edition, Section 5.4.1.6

Leaveouts in Structural Pavement

Session 6

Ref: AASHTO Roadside Design Guide – 4th Edition, Figure 5-52

Guardrail Posts in Rock AASHTO

Guardrail Posts in Rock - NCDOT

SECTION 862 GUARDRAIL

862-3 CONSTRUCTION METHODS

Where rock interferes with the proper installation of the post, excavate a shaft in the rock at least 9 inches wide, parallel to the roadway, by 23 inches long, perpendicular to the roadway and 24 inches deep. Place the post against the roadside edge of the shaft and fill in behind the post with Class VI select material, up to the top elevation of the rock. Fill the remainder of

Height Transition – 31" to/from Old Guardrail

ELEVATION VIEW

TRANSITION FROM OR 1'-11" TO 2'-1" W-BEAM GUARDRAIL MOUNTING HEIGHT

SHEET 4 OF 8 862 - 02	ROADWAY STANDARD DRAWING FOR GUARDRAIL INSTALLATION	1-18 STATE OF NORTH CAROLINA DEPT. OF TRANSPORTATION DIVISION OF HIGHWAYS RALEIGH, N.C.
--------------------------	--	---

Session 6

Design Workshop #1 - LON

DETERMINE TREATMENTS FOR NB TRAFFIC

Design Workshop #2: LON for Bridge on Rural Road

Bridge on Rural Road with Two-way Traffic

Design Speed 60 mph

AADT 2,250

Lane width: 12 ft.

Shoulder width: 8 ft.

Side slope: 4:1

Design for both sides of road, NB

Design Workshop #1 - LON

DETERMINE TREATMENTS FOR NB TRAFFIC

Design Workshop #1 - LON

Determine Design Clear Zone

The Clear Zone is a look up value from NCDOT Design Manual

Design speed: 70 mph ADT: 53,000 Side slope: 10:1 or 6:1

Design Clear Zone Distance – Fill

Design	Design		Foreslopes		
Speed	-	1V:6H	1V:5H to	11/211	
(mph)	n) ADT or flatter 1V:4H		1V:4H	1V:3H	
40 mph	UNDER 750	7-10	7-10	b	
	750-1500	10-12	12-14	b	
	1500-6000	12-14	14-16	b	
	OVER 6000	14-16	16-18	b	
45-50	UNDER 750	10-12	12-14	b	
mph	750-1500	14-16	16-20	b	
	1500-6000	16-18	20-26	b	
	OVER 6000	20-22	24-28	b	
55 mph	UNDER 750	12-14	14-18	b	
	750-1500	16-18	20-24	b	
	1500-6000	20-22	24-30	b	
	OVER 6000	22-24	26-32ª	b	
60 mph	UNDER 750	16-18	20-24	b	
	750-1500	20-24	26-32ª	b	
	1500-6000	26-30	32-40 ^a	b	
	OVER 6000	30-32ª	36-44ª	b	
65-70	UNDER 750	18-20	20-26	b	
mph	750-1500	24-26	28-36ª	b	
	1500-6000	20.023	34-42ª	b	
	OVER 6000	30-34ª	38-46 ^a	b	

Design Speed 70 mph AADT = 53,000

LC = 32 ft.

Example – LON

Calculating the Length of Need (L)

Length of Need – NCDOT

Calculating the length of need (L) for straight or nearly straight sections of roadway for parallel installation:

$$L = \frac{LH - N}{LH/LR}$$

Step 2: Define the Point of Departure

Look up LR:

Design Speed 70 mph AADT = 53,000

Design	Runout Length (L _R) Given Traffic Volume (ADT				
Speed (mph)	Over 10,000	5,000 to 10,000	1,000 to 5,000	Under 1,000	
80	470	430	380	330	
70	360	330	290	250	
60	300	250	210	200	
50	230	190	160	150	
40	160	LR = 360 ft.	110	100	
30	110	90	80	70	

Session 6

AASHTO Runout Lengths – LR

Step 3: Intersect the Hypotenuse

Example – LON

Determine LH – distance to the backside of hazard

For the back of the sign support:

Session 6

LH = 20 + 2 = 22'

Find N

N = The distance from the edge of the travel lane to the face of the guardrail.
N = Minimum shoulder width for locals and collectors.
N = Usable shoulder width plus 2' to arterials, interstates and freeways.

Calculate LON - Determine Bid Item

LH = 22 ft N = 6 ft LR = 360

Using the formula L =

I	LH - N
	LH/LR
=	22 – 6
	22/360
=	262 ft

Does NOT include Terminal: GREU (50±')

Add 2' for length of hazard; add 25' for CAT-1 effectiveness; convert to panel lengths by dividing by 12.5, rounding up to whole number, and multiplying by 12.5

A CAT-1 must be added

Calculate LON – Additional Offset

If guardrail is placed as far off as allowed:

LH = 22 ft N = (20'-5.5') =14.5' LR = 360'

Using the formula L =

= 123 ft.

A CAT-1 must be added

 $^{<}$ BIG savings by offsetting the barrier: 123' VS 262' $^{\succ}$

Example – LON

TALKING POINTS

What if the situation were a dual bridge? Normal design sets L_A to L_C , in this case 32'; but if the designer chose to shield the ENTIRE opening, L_A would be 64'(to the opposite bridge rail).

How much more barrier would that require?

Placing the barrier at the 6' offset and parallel, the two lengths are:

Session 6

For
$$L_A = 32'$$
 (and $L_2 = 6'$), $L = 293'$
For $L_A = 64'$ (and $L_2 = 6'$), $L = 326'$

DOT

Design Workshop #2: LON for Bridge on Rural Road

Bridge on Rural Road with Two-way Traffic

Design Speed 60 mph

AADT 2,250

Lane width: 12 ft.

Shoulder width: 8 ft.

Side slope: 4:1

Design for both sides of road, NB

Design Workshop #2: LON for Bridge on Rural Road

Session 6

Determine Design Clear Zone

The Clear Zone is a look up value from NCDOT Design Manual

Design speed: 60 mph AADT: 1250 Side slope: 4:1

6-76

Design Clear Zone Distance – Fill

Design	Docign	Foreslopes		
Speed	Design ADT	1V:6H	1V:5H to	1V:3H
(mph)	ADT	or flatter	1V:4H	10.50
40 mph	UNDER 750	7-10	7-10	b
	750-1500	10-12	12-14	b
	1500-6000	12-14	14-16	b
	OVER 6000	14-16	16-18	b
45-50	UNDER 750	10-12	12-14	b
mph	750-1500	14-16	16-20	b
	1500-6000	16-18	20-26	b
	OVER 6000	20-22	24-28	b
55 mph	UNDER 750	12-14	14-18	b
	750-1500	16-18	20-24	b
	1500-6000	20-22	24-30	b
	OVER 6000	22-24	26-32ª	b
60 mph	UNDER 750	16-18	20-24	b
	750-1500	20-24		b
	1500-6000	26-30	32-40 ^a	b
	OVER 6000	30-32ª		b
65-70	UNDER 750	18-20	20-26	b
mph	750-1500	24-26	28-36ª	b
	1500-6000	28-32ª	34-42ª	b
	OVER 6000	30-34ª	38-46ª	b

Design Speed 60 mph AADT = 2250

LC = 32 ft.

For Both Sides

Example #2: LON for Bridge on Rural Road Near Side

Calculating the Length of Need (L)

Length of Need – NCDOT

Calculating the length of need (L) for straight or nearly straight sections of roadway for parallel installation:

$$L = \frac{LH - N}{LH/LR}$$

Step 2: Define the Point of Departure

Look up L_R:

Design Speed 70 mph AADT = 53,000

Desigr		Runout Length (L _R) Given Traffic Volume (ADT) (ft)			
Speed (mph)		5,000 to 10,000	1,000 to 5,000	Under 1,000	
80	470	430	380	330	
70	360	330	290	250	
60	300	250	210	200	
50	230	190	160	150	
40	160	LR = 210 ft.	110	100	
30	110	90	80	70	

Session 6

AASHTO Runout Lengths – L_R

Step 3: Intersect the Hypotenuse

Example #2: LON for Bridge on Rural Road Near Side

Find N

N = The distance from the edge of the travel lane to the face of the guardrail.
N = Minimum shoulder width for locals and collectors.
N = Usable shoulder width plus 2' for arterials, interstates and freeways.

Calculate LON — Determine Bid Item Near Side

LH = 32 ft N = 8 ft LR = 210

Using the formula L =

I	=	<u>LH – N</u>
L		LH/LR
	=	32 – 8
	-	32/210
	=	158 ft.

Does NOT include Terminal: GREU (50±')

Need a Structure Anchor Unit: 18.75' 24' of Bridge Parapet is Effective Barrier

Therefore 158-19-24 = 115 LF of standard barrier is required; convert to panel lengths by dividing by 12.5, rounding up to whole number, and multiplying by 12.5

Session 6

6-86

Example #2: LON for Bridge on Rural Road Far Side

Session 6

6-87

Find N

N = The distance from the edge of the travel lane to the face of the guardrail.
N = Minimum shoulder width for locals and collectors.
N = Usable shoulder width plus 2' for arterials, interstates and freeways.

Calculate LON – Determine Bid Item Far Side

LH = 32 ft N = 20 ft LR = 210

Using the formula L =

1 =	<u>LH – N</u>	
L –	LH/LR	
=	32 – 20	
_	32/210	
=	79 ft.	

Does NOT include Terminal: GREU (50±')

Need a Structure Anchor Unit: 18.75'

24' of Bridge Parapet is Effective Barrier

Therefore 79-24-19 = 36 LF of standard barrier is required (If L had been less than 43', one panel would be needed between the GREU and the structural Anchor Unit.)

Review Learning Outcomes

- Define the Length of Need and apply the design principles for an optimal installation
- Modify guardrail for special situations

