

North Carolina Department of Transportation Highway Safety Barrier Design Training

Instructor: Bill Fitzgerald, PE KLS Engineering, LLC (703) 858 1356

March 2 – 3, 2020

Ground Rules

- Be on time
- Participate
- Restrict sidebar conversations
- Turn off cellphones

Guidance Presented

Additional Resources

TTI Ho Contact U

1-4

FHWA Eligibility Letters

NCDOT

https://safety.fhwa.dot.gov/roadway_dept/ countermeasures/reduce crash severity/

https://mwrsf.unl.edu/researchhub

https://www.roadsidepooledfund.org

UNIVERSITY of NEBRASKA-LINCOLN

Roadside Safety Pooled Fund

Objectives of Course

At the end of this module you will be able to:

- Identify when a traffic barrier MAY be the best treatment to use at a specific site.
- Select a barrier that will adequately shield the identified hazard(s).
- Assess the topography of the site to provide for an optimal barrier system installation.

Session 1:

Introduction and Pre-assessment

1-6

Session 1 Learning Outcomes

At the end of this session, you will be able to:

- Identify the primary Roadside Safety Concerns in North Carolina.
- Assess your current knowledge of Barrier Design Principles.

National Roadway Departure Fatalities

North Carolina Crash Data Trend

North Carolina Total Fatalities vs. Roadway Departure Fatalities

Ref: FARS Data - 2018

North Carolina Strategic Highway Safety Plan

Session 1

Lane Departure STRATEGIES

- 1. Keep vehicles on the roadway.
- 2. Reduce the potential for crashes when vehicles leave the roadway.
- 3. Reduce the severity of crashes that do occur when vehicles leave the roadway.
- 4. Support & enhance driver education & awareness programs.

North Carolina Strategic Highway Safety Plan

Strategy 3: Reduce severity of crashes that do occur when vehicles leave the Roadway.

Supporting Actions

- Increase use of median barriers statewide. Cable barriers in particular provide a cost effective means of shielding the median and reducing severity of impacts.
- Shield motorists from trees, poles, or other fixed objects using guardrail or other barrier types.

Real World Crashes

Session 1

Real World Crashes

Need for Training

Potential consequences of poorly designed barrier systems include:

- Systems may not function as designed.
- Crash severities may be increased.

Session 1

Need for Training

The next 9 slides show locations where barrier was installed. For each photo, decide at a glance whether you believe it to be:

- 1. Good example,
- 2. Bad example, or
- 3. Cannot decide without more information.

We will discuss these slides in further detail in later applicable sessions, so please record and save your responses.

Session 1

1-19

Review Learning Outcomes

- Identify the primary Roadside Safety Concerns in North Carolina.
- Assess your current knowledge of Barrier Design Principles.

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 2: Clear Zone and Guidelines for Barrier Need

Session 2 Learning Outcomes

At the end of this session, you will be able to:

- Understand and apply the clear zone concept
- Identify objects and features that may require shielding

Clear Zone: A Definition

The unobstructed, traversable area provided beyond the edge of the through traveled way for the recovery of errant vehicles. The clear zone includes shoulders, bike lanes, and auxiliary lanes, except those auxiliary lanes that function like through lanes.

Ref: AASHTO Roadside Design Guide, 4th Edition, Glossary

Clear Zone Principle

Session 2

2-4

As Wide as Practical

Session 2

Clear Zone Factors

- Slope Type and Steepness
- Design Speed
- Traffic Volume
- Horizontal Curvature

Recoverable

≥4 1

LIGHT

Non-Recoverable (but Traversable)

Clear Zone

LIGHT

GM PROVING GROUND ACCIDENTS

211 CASES

NCDOT Design Clear Zone Table

Design	Design ADT	Foreslopes			Backslopes		
Design Speed		1V:6H	1V:5H to	1V:3H	1V:3H	1V:5H to	1V:6H or
		or flatter	1V:4H			1V:4H	flatter
40 mph	UNDER 750	7-10	7-10	**	7-10	7-10	7-10
or less	750-1500	10-12	12-14	**	10-12	10-12	10-12
	1500-6000	12-14	14-16	**	12-14	12-14	12-14
	OVER 6000	14-16	16-18	**	14-16	14-16	14-16
45-50 mph	UNDER 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	OVER 6000	20-22	24-28	**	14-16	18-20	20-22
55 mph	UNDER 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	OVER 6000	22-24*	26-32*	**	16-18	20-22	22-24
60 mph	UNDER 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32 [*]	**	12-14	16-18	20-22
	1500-6000	26-30	32-40 [*]	**	14-18	18-22	24-26
	OVER 6000	30-32 [*]	36-44*	**	20-22	24-26	26-28
65-70 mph	UNDER 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36 [*]	**	12-16	18-20	20-22
	1500-6000	28-32 [*]	34-42*	**	16-20	22-24	26-28
	OVER 6000	30-34 [*]	38-46*	**	22-24	26-30	28-30

* Clear zone distances can be limited to 30 feet unless in a high accident rate areas

Ref: Roadway Design Manual, Part I. Clear Zone Distances, 1-4N

Important Distinction

<u>Available</u> Clear Zone = Area <u>Existing</u> for recovery

<u>Design</u> Clear Zone = A <u>selected</u> value used for design to provide recovery area for a majority of errant drivers

Session 2

Do not compromise available clear zone

Session 2

Clear Zone Adjustments for Non-uniform Slopes

2-20

Clear Zone with a Ditch

- The combination of S₁ and S₂ needs to fall within the preferred area of Figure 3.6 of the RDG for the clear zone to extend beyond the ditch bottom
- If the combination is outside and S₁ is recoverable, the clear zone stops at the ditch bottom
- If S₁ is not recoverable, the clear zone stops at the top of the S₁ slope

Ref: AASHTO Roadside Design Guide, 4th Edition, Figure 3.6, Pg. 3-9

(A) INTERSTATES, FREEWAYS, EXPRESSWAYS, OTHER FOUR LANE FACILITIES, ARTERIALS, COLLECTORS AND LOCALS (OVER 4000 ADT DESIGN YEAR TRAFFIC)

Clear Zone with a steep Cut Slope

S (≥4) Recoverable	Clear Zone extends to the base of the cut.		
	If this distance is less than the design clear zone:		
	• For a smooth rock cut – it can be considered a natural barrier.		
	(Note a 2:1 smooth slope is not normally shielded)		
	 For a jagged rock cut – it is considered as any other significant obstacle within the design clear zone. 		
S (<4) Non- Recoverable	Clear Zone ends at the edge of shoulder.		

Ref: AASHTO Roadside Design Guide, 4th Edition, Pg.3-24

....Curves Present Particular Safety Problems

Horizontal Curves - AASHTO

Horizontal Curve Adjustments

K_{cz} (Curve Correction Factor)(U.S. Customary Units)

Radius	Design Speed (mph)					
(ft)	40	45	50	55	65	70
2,950	1.1	1.1	1.1	1.2	1.2	1.2
2,300	1.1	1.1	1.2	1.2	1.2	1.3
1,970	1.1	1.2	1.2	1.2	1.3	1.4
1,640	1.1	1.2	1.2	1.3	1.3	1.4
1,475	1.2	1.2	1.3	1.3	1.4	1.5
1,315	1.2	1.2	1.3	1.3	1.4	-
1,150	1.2	1.2	1.3	1.4	1.5	-
985	1.2	1.3	1.4	1.5	1.5	-
820	1.3	1.3	1.4	1.5	-	-
660	1.3	1.4	1.5	-	-	-
495	1.4	1.5	-	-	-	-
330	1.5	-	-	-	-	-

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition, Table 3-2.Pg. 3-4

Horizontal Curves - NCDOT

The Roadside Design Guide states: "The designer **may** choose to modify...". Again, not normally done unless crash history indicates a problem.

Need approval by Roadway Design Unit

Remember - As Wide as Practical

Clear Zone and Curbs

The minimum lateral offset of 1.5 ft should be provided beyond the face of curbs to any vertical objects. This is called the Lateral Offset and *should not be construed as an acceptable clear zone distance.*

Ref: AASHTO Roadside Design Guide, Section 10.2.1.1 Curbs

Clear Zone in an Urban Area

Figure 10-1. Lateral Offset for Objects at Horizontal Curves on Curbed Facilities

Order of Preference

- 1. Remove hazard
- 2. Redesign hazard (make traversable)
- 3. Relocate hazard (move away from traffic)
- 4. Reduce Impact Severity (use breakaway design)
- 5. SHIELD hazard
- 6. Delineate hazard so motorist can avoid

Ref: AASHTO Roadside Design Guide, 4th Edition – Pg. 1-4

Barriers Must Be Less of a Hazard

Session 2

AASHTO Barrier Warrants

Obstacle	Guidelines
Bridge piers, abutments, and railing ends	Shielding generally required
Boulders	Judgment decision based on nature of fixed object and likelihood of impact
Culverts, pipes, headwalls	Judgment decision based on size, shape and location of obstacle
Foreslopes and backslopes (smooth)	Shielding not generally required
Foreslopes and backslopes (rough)	Judgment decision based on likelihood of impact
Ditches (parallel)	Refer to Figures 3-6 and 3-7
Ditches (transverse)	Shielding generally required if likelihood of head-on impact is high
Embankment	Judgment decision based on fill height and slope (see Figure 5-1)
Retaining Walls	Judgment decision based on relative smoothness of wall and anticipated maximum angle of impact
Sign/Luminaire supports	Shielding generally required for non-breakaway supports
Traffic signal supports	Isolated traffic signals within clear zone on high-speed rural facilities may warrant shielding
Trees	Judgment decision based on site-specific circumstances
Utility poles	Shielding may be needed on a case by case basis.
Permanent bodies of water	Judgment decision based on location and depth of water and likelihood of encroachment.

Session 2

Ref: AASHTO Roadside Design Guide, 4th Edition Chapter 5 Table 5-2, Pg. 5-9

NCDOT Guidance

ROADWAY DESIGN MANUAL

PART 1

3-1

CHAPTER THREE

GUARDRAIL, BARRIERS AND ATTENUATORS

GUARDRAIL	WARRANTS	

Warrants for guardrail are to be in accordance with the "Roadside Design Guide" and with the guardrail warrant curves included in this Chapter.

In the preliminary design stage, the designer will establish the location and grade of the project so as to eliminate as much guardrail as possible using these warrants.

After location data is received, plans plotted, grades set, and initial templates determined, the following procedures should be followed:

(1) Determine Guardrail Locations

- (a) Is guardrail warranted in accordance with Figure 1 in this Chapter? If not required, go to (c). If required, go to (b).
- (b) Is guardrail required in accordance with Figures 4 through 6 of this Chapter? If not required, go to (c).
- (c) Is guardrail warranted in accordance with Table 2 and 3 in this Chapter? Refer to Sheet 1-4M and 1-4N in Chapter 1 of this manual.

Session 2

(2) Can Guardrail be eliminated?

2-34

Embankment Guidelines

Ref: AASHTO Roadside Design Guide, 4th Edition – Figure 5.1b, Pg. 5-6

NC Embankment Warrants

Ref: NCDOT Roadway Design Manual, Part 1, Chapter 3

Modified Embankment Warrants

Session 2

Ref: NCDOT Roadway Design Manual, Part 1, Chapter 3, Figure 5

Is barrier warranted at the locations shown in the next eight photos?

Do not consider effectiveness of existing barrier (if any).

2-45

Median Width Guidelines - AASHTO

Median Width Guidelines - NCDOT

ROADWAY DESIGN MANUAL

PART 1

GUARDRAIL / GUIDERAIL TREATMENT IN MEDIAN LOCATIONS 3-6

Guidelines for typical Median Guardrail / Guiderail Installations:

Incorporate median guardrail / guiderail on all freeway projects with median widths of 70 feet or less.

Two types of installations will be used: Cable guiderail or steel beam guardrail with 6'- 3" post spacing (semi-rigid guardrail).

Review Learning Outcomes

- Understand and apply the clear zone concept
- Identify objects and features that may require shielding

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 3:

Testing Requirements and Performance Characteristics of Common Barrier Systems

Session 3 Learning Outcomes

At the end of this session, you will be able to:

- Understand how barriers are tested for crashworthiness
- Identify common barrier systems
- Explain how these barrier systems function
- Define the key components of a transition design

Crash Testing Guidelines

- In 1993, crash testing and evaluation criteria were published as NCHRP Report 350
- In 2009, the Manual for Assessing Safety Hardware (MASH) was published by AASHTO. It was used by FHWA as the testing standard for all new products
- In 2016, an update to MASH was adopted and a timetable for implementation of new installations complying with this edition was signed between FHWA and AASHTO

MASH Implementation Timeline

(AASHTO/FHWA Joint MASH Implementation Agreement Issued January 7, 2016)

MASH Test Conditions

Selection of a performance level is based on speed and traffic mix.

TL-1, TL-2, and TL-3: crash tests with small car and pickup truck with a 25° impact angle at 31, 44, and 62 mph, respectively.

NCHRP 350 comparison with MASH Crew Cab Truck

MASH Test Conditions (cont'd)

TL- 4: TL-3 + 15° impact angle, 56 mph Single-Unit Truck
TL- 5: TL-3 + 15° impact angle, 50 mph Tractor-Van Trailer
TL- 6: TL-3 + 15° impact angle, 50 mph Tractor-Tank Trailer

22,000 lbs.

80,000 lbs.

80,000 lbs.

Functional Requirement of Barrier

- 1. Contain Vehicle
 - No Penetration
 - No Vaulting/Under-riding
- 2. Redirect Vehicle Smoothly (low exit angle) with no snagging/overturning, and no excessive rotation (75 degree max)

Session 3

- 3. Tolerable Occupant Impact Forces
- 4. Minimum Occupant Compartment Deformation and no Debris Intrusion

Standard Barrier Systems

- Rigid Systems
- Semi-Rigid Systems
- Flexible Systems
- Median Barrier Systems

Barrier Systems: Rigid Barriers

Rigid Barrier Systems have little (between 0 to 1 ft.) deflection under the TL-3 pickup impact. They are generally anchored by some acceptable means.

Examples include:

- New Jersey Safety Shape Concrete Barrier
- F-shape Concrete Barrier
- Single or Slope Concrete Barrier
- Vertical Wall

Rigid Barrier

New Jersey Shape

F-Shape

Single Shape

Rigid Barrier – New Jersey Shape

TYPE IV - NO GLARE SCREEN PERMITTED

Type IV typically used

Types II & III for bifurcated crosssections

2" min Embedment minimizes Deflection

When large trucks are not an issue

Rigid Barrier – New Jersey Shape

2" min Embedment minimizes Deflection

Considered TL- 5

For use when conditions warrant (typical urban, high truck volume

3-13

Session 3

Rigid Barrier – New Jersey Shape

Session 3

MASH Testing of 32" New Jersey Shaped Concrete Barrier

Rigid Barrier

Session 3

Note – No national criteria for when to use TL-4, 5, or 6

Rigid Barrier: TL-5

Zone of Intrusion

Zone of Intrusion (ZOI) the region measured above and behind the face of a barrier system where an impacting vehicle or any major part of the system may extend during an impact.

"Review TL-4 barrier heights fell in a range of 737 mm (29 in.) to 1.07 m (42 in.)

Figure 5-31. Zone of Intrustion for TL-4 Barriers per NCHRP Report 350

AASHTO LRFD Bridge Specification (7th Edition)

3.6.5.1 Where the design choice is to redirect or absorb the collision load, protection shall consist of one of the following:

- An embankment;
- A structurally independent, crashworthy groundmounted 54.0-in, high barrier, located within 10.0 ft from the component being protected; or
- A 42.0-in. high barrier located at more than 10.0 ft from the component being protected.

Such barrier shall be structurally and geometrically capable of surviving the crash test for Test Level 5, as specified in Section 13.

Barrier Systems: Semi-Rigid

Semi-Rigid Barrier Systems have deflections of a few feet (between 2 to 5 ft.) under the TL-3 pickup impact.

Typically consist of beam and post elements.

TERMINOLOGY: Call new system 31" (shows 2'-1" to bolt on standards)

Session 3

Barrier Systems: Semi-Rigid

W-Beam Steel Guardrail – 350 Guardrail (29")

- 12" wide W-beam rail section (12-gauge thickness).
- Posts are spaced at 6'-3" centers, and the nominal rail height is 27" – 30"

Session 3

Rail splice at the post.

NCDOT

- Steel posts: W6 x 8.5/9.0 x 6'-0" long.
- Blocks: 6" x 8" wood or plastic.

3-22

Guardrail with Wood Post & Wood Block-Out 27 5/8" Height

Session 3

Guardrail with Steel Post & Wood Block-Out 27 5/8" Height

Session 3

3-24

Barrier Systems: Semi-Rigid

> **31**" (shown in standards as 2'-1")

- 31" Height to Top of Rail
- Rail Splice mid-span.
- Post spacing 6'-3"
- Steel posts, W6 x 8.5/9.0 x 6'
- Offset Block: 8" recycled plastic or composite

31" Guardrail

Rail Splice Mid-Span

8″

31" MASH Test 3-11

Session 3

(meret m)

M LT I

Session 3

Existing Guardrail Height

Session 3

3-29

Barrier Systems: Flexible Barriers

Flexible Barrier Systems typically have relatively <u>large deflections</u> Examples of Flexible Barriers include:

- Weak post W-beam
- Low tension cable
- High tension cable

No longer in standards To be removed from standards when MASH available

Barrier Systems: Flexible Barriers

Low Tensioned Cable Barrier

- Generic System
- 3 cables design (center cable on opposite side of the post for median application).
- Design deflection of approximately 12 ft.
- Generic crashworthy terminal.

Cable Guiderail

Session 3

Welcome To NORTH CAROLINA

NCDOT Cable Guiderail

Barrier Systems: Flexible Barriers

Advantages of cable systems include:

- Low initial cost
- Lower deceleration forces
- Effective vehicle
 containment and redirection
- Installation conditions
 flexibility
- SNOW

Barrier Systems: Flexible Barriers

- High Tensioned Cable (HTC) Barrier
 - Five different proprietary designs available
 - Each requires a unique proprietary terminal
 - Somewhat reduced deflections
 - Generally easier maintenance
 - Can retain effectiveness after most impacts

High-Tension Cable (HTC) Systems

- Brifen
- Safence
- CASS (Trinity Steel)
- Nucor
- Gibraltar ★

Currently, NO system has passed all MASH 2016 testing

= APL

Brifen USA

http://www.brifenusa.com

- Interweaving cables creates a "mini-anchor" at each post due to friction as the tensioned cables weave past each post.
- 3 or 4 cable design available.

Session 3

Gibraltar

http://www.gibraltartx.com

- Has hairpin type connection to post.
- Posts to cable connection is alternate side-to-side
- 3 or 4-cable design available.

Session 3

Trinity Industries

http://www.highwayguardrail.com

(Cable Safety System-CASS)

- Post has waved-shape slot located in the web of the upper portion of the post.
- 3 or 4 cable design available.

Four Cable System

I LIGHT

Post Foundation and Typical Terminal

HTC On 4:1 Slope

Session 3

LISt

Barriers in the Median

Used to separate opposing traffic on a divided highway or to separate through traffic from local traffic.

Session 3

- Many barriers approved for roadside applications can be modified for use in the median.
- Width of the median is an important consideration.
- Also must consider the dynamic deflection of the barrier to avoid intrusion into opposing traffic.
- There are terminals designed specifically to shield the ends of median barriers.

3-43

MASH 27" W-Beam Median Barrier Test

Session 3

MASH 31" Median Barrier Test

Session 3

MASH 31" Median Barrier

Flexible Median Barriers

Session 3

Advantage of high tension cable is it may remain effective after impact.

Flexible Median Barriers

Transition Sections

When a softer (more flexible) barrier precedes a stiffer barrier, a gradual stiffening must occur between the two systems.

Session 3

> An effective transition must provide the following:

- Adequate connection (TENSION continuity)
- Adequate length to gradually increase stiffness.

Inadequate Transition

Session 3

and Litters

Transition Sections

Successfully crash-tested transitions include the following essential elements (in addition to a structural connection):

- Additional and/or Larger Posts
- Nested rail (w-beam or Thrie-beam)
- Curbs (only as crash-tested transition unit), Rub Rails, and/or Flared Parapet Wall to Prevent Snagging

NCDOT Transition – Thrie-beam

ELEVATION

NCDOT Transition – Previous Standard

Session 3

3-53

L.L. Ents

8	ROADWAY STANDARD DRAWING FOR	1-18 STATE OF
SHEET 4 OF 7 862-03	STRUCTURE ANCHOR UNIT	NORTH CAROLINA DEPT. OF TRANSPORTATION
0	GUARDRAIL ANCHOR UNIT TYPE B-77	DIVISION OF HIGHWAYS
ω	FOR F-SHAPE BARRIER	RALEIGH, N.C.

NCDOT Transition – With Curb

31" Transition

Session 3

H LTEN

Transition – 31", TL-2

Connections to Low Parapets or Combination Rails

If the concrete parapet or portion of a combination rail is less than the transition height (31"), a steel plate may be applicable to adjust the height.

Transition: HTC to Guardrail (Spatial)

HTC or LTC - Cable to W-Beam Transition

Probably not going to be available with MASH

Session 3

HTC - Cable to W-Beam Transition

Session 3

3-62

Temporary Barrier – Need for Tension

Session 3

Traffic Management Plan

Liber

3-63

COMPUTED BY: KIN MASHINGTON DATE: 05/26/2015 CHECKED BY: T.F. DUNCAN, PE BATE: 06/2/2005

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

SUMMARY OF EARTHWORK

Status	Erran. CY	-15 -17	a	ex	
A					
17-84144		1,148	1,124		
36+48.63	12	1332	1300		
¥	-				
.22-51.00		33,815	27.843		
THE	186	35,487	36.481	-	
MOVAL	18,417			18,442	
TOTALS	18,552	35,607	26381	18,445	
EPLACE TOP RROW PET			1,825	1.	
RANTERIAL	-	672	672		
OTALS:	18351	17.279	28,416	DL4C	
81	18,640 CT		BARCY	-	
	38-44.63 T	77-8636 54 36-663 32 57-8636 32 F. 22-8636 FRAS 166 907-8626 16,09 197-8626 16,09 197-8626 16,59 197-8626 16,59 197-8626 16,59 197-8626 16,59 197-8626 16,59	PF-BASK 54 1,168 344-B4-03 32 1,332 % 32-50.00 33,415 FEAL 166 35,647 FEAL 166 35,647 FEAL 166 35,647 FEAL 16,89 35,647 FEAL 16,89 35,647 FEAL 16,89 35,647 FEAL 16,89 36,647 FEAL 16,89 35,647 FEAL 16,89 36,77 FEAL 16,89 36,77 FEAL 16,89 36,77 FEAL 16,89 37,779	27-68-94 32 1,268 1,714 38-68-03 32 1,332 1,332 1,330 % 32-63,06 33,415 23,647 23,647 727-63,06 33,417 23,647 25,647 26,647 764 106 26,667 26,647 26,647 707-63,67 10,549 10,549 10,549 10,549 707-63,67 10,549 10,549 10,549 10,549 707-63,67 10,549 10,549 10,529 26,649 26,649 707-64,67 10,549 10,549 10,549 10,529 26,649 26,749	

UNRERCUT EXCAVATION = 500 CV SELECT GRAVILAR MATERIAL = 5000 CV FARRIC FOR SOIL STABILIZATION = 1500 SY

W - DISTANCE FROM EDGE OF LANE TO FACE OF GUARDRAD

SNCDOT

SUMMARY OF EXISTING ASPHALT PAVEMENT REMOVAL

LINE	Station	Station	LOC LT/RTICL	AREA
4.0	17-48.89	19+14.90	- a -	- 245
40	19-20.0)	34+38.40	a.	243
.ner.	14-73.86	22181.55	a	2,391
			1	_
-		-		_
-			-	_
-				
-		-	TODAL	1,8%
-		-	8411	Looks

APPROXIMATE QUANTITIES ONLY. UNCLASSIFIED EXCAVATION, FINE GRADING, CLEARING AND GRUBBING, AND REMOVAL OF EXISTING PAYEMENT WILL HE PAID FOR AT THE LIMP SUM PRICE FOR "GRADING".

ROUECT N

B-1303

SHEET NO.

3-8

LINE					LENGTH			INT POINT	W" DIST				1	N			NCHORS				P. ATTE		RENOVE		
	BEG. STA.	EN TA.	LOC.	STRAIGHT	TEMP	FACED	APPR. END	TRAIL.			APPR. END		APPR. END	TRAIL END	TYPE	0RAU 360	TEMP GRAU				YPE 35		EXISTING GRORAL		REMARKS
42	13+82.94	17+1 8	RT	475.08			15+65.00	17+77.84	10	13	50	0.40	1		1	1				-			137.50	-	GR WARRANTED ALONG ENTIRE RT SIZE HERE
4	13+82.94	17+7	LT	475.08			17+77.94	13+00.00	10	13		90	-	1	1	i				-			137.50		OR WARRANTED ALONG ENTIRE LT SIDE MEN
4.	19+84.06	23+0	RT	325.08			19+84.06	23+50.00	10	13		50		1	1	1							137,50		
-1-	19+\$4,06	22+8 5	LT	340.08			21+90.00	19+84.86	10	13			1		1	1							137.50		
al.	16+80.08		RT						10	13	- 50		1				1								REQUESTED BY TRAFFIC CONTRE
4		21 00	ILL						10	13		50		1			1		/						REQUESTED BY TRAFFIC CONTR
-DET-	14+44,19	7 A15	RT.		\$75.00		15+00.00	23+00.00	6	8		- 50	1	1			2								REMOVE -DET- TEMP GR
-DET-	15+87.50	58.00	LT		562,50		20+50.00	17+00.00	6	8	50	50	1	1			2								REMOVE -DET- TEMP GR
LIFTOTAL:				1,575.0	1,437,5										4	4	5								
-			_						_									<u> </u>							
	IS DEDUCTION			-		-			-										-	-					
RAUSE			50.00	-200.00												_				_					
YPE II	4	- 26	18,75	-75.00					-	-		_		-	 -				-	-					
TMP GRAU	4	- 2	50,00		-300.00	-			-	-					 -				-	-				-	
NCHOR TOTA	ALSi			-275.00	-300.00										 					-		$ \rightarrow $			
															 				-	-		\rightarrow			
RAND TOTAL	12			1,308.001.2	1,237.501.F					_			-	-	 4	4			-	-		\rightarrow	556.00 LF	-	
1.00				1 100 00 1 1	1237.591.8	-	-		-	-	-	-			 				-	-			554.00 L.F		
and a				1,580.00 LF	1,237,501.8				-	-				-	 4	4			-	-		\rightarrow	554.00 L.F		
															 -				-	-					
ADDITIONAL C	GUARDRAIL POST;			5 EA					-						 -				_	-					

Session 3

Quantity Summary Sheet

In LIFE

Quantity Summary Sheet – blow-up

	v				NCHORS	
APPR. END	TRAIL. END		TYPE	GRAU 350	TEMP GRAU 350	
1			1	1		
	1		1	1		
	1		1	1		
1			1	1		
1					1	
	1				1	
1	1				2	
1	1				2	
			4	4	6	
		I				1 1

Need to re-establish tension in any altered guardrail – include in plan sheets

★ Placement of GRAU (GREU) must abide by standard application criteria (Deflection and LON)

Review Learning Outcomes

- Understand how barriers are tested for crashworthiness
- Identify common barrier systems
- Explain how these barrier systems function
- Define the key components of a transition design

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 4:

Testing Requirements and Performance Characteristics of End Treatments and Impact Attenuators

Session 4 Learning Outcomes

At the end of this session, you will be able to:

- Understand how end treatments and impact attenuators are tested for crashworthiness
- Identify common end treatments and impact attenuators
- Understand how these systems function
- Choose the appropriate system for a specific site

Guardrail End Treatments

A barrier end treatment must serve two functions:

- Provide the necessary TENSION of the guardrail system for downstream impacts
- > Be crashworthy when impacted end-on.

Cable Anchor Terminal – MASH

- 2 Design Tested
- Both have a strut between last 2 posts

TxDOT Design 9'- 4 1⁄2 " rail element Rail ends at last post

MwRSF Design 12'- 6" rail Rail extends past last post

Session 4

Cable Anchor Terminal - Tension

Session 4

TRAILING END UNIT ASSEMBLY

C.A.T.-1 SYSTEM

Session 4

NCDOT

Guardrail Cable Anchor Terminal

Session 4

Impacted at 6th post from the end

I LITES

Vehicle deflected up to 10' behind the barrier

Guardrail Cable Anchor Terminal Test Analysis

Cable Guiderail terminal - LTC

Cable Guiderail terminal - HTC

Session 4

M LTEN

PRE-ASSESSMENT PHOTO

Session 4

Cable Guiderail Anchor Unit Placement

End Treatment MASH Test Matrix

Guardrail End Treatments

Types of End Treatments

- Buried-in-Cut (Detail, not in Standards)
- Tangent terminals terminal is parallel to the roadway or has a straight flare with a "slight" offset; all are Energy-absorbing
- Flared terminals terminal is placed on a flare to the roadway typically 3' or 4'; both non-energy- and energy-absorbing

Buried in Cut End Treatment

- Key design considerations:
 - For slopes steeper than 10:1, keep the height of the w-beam rail constant relative to the roadway grade until the barrier crosses the ditch flow line (but a max height of 47")
 - Use a flare rate, either 13:1 or appropriate for the design speed,
 - Add a w-beam rubrail when the distance between the bottom of the w-beam rail and the ground exceeds ~19",
 - Use an anchor of steel posts capable of developing the full tensile strength of the w-beam rail and <u>buried</u> 1' below ground

MASH Buried in Cut End Treatment

Session 4

LI LITE

Buried in Cut (350 – to be Updated)

BIC Looking Across Roadway

Session 4

Single Rail BIC

Session 4

BIC Considerations – 10:1 Slope for Single

Session 4

4-21

Welcome To NORTH CAROLINA

BIC Considerations - LON

Any concerns with this installation?

Session 4

End Treatments - Terminology

CAT-1 – Cable Anchor Terminal – non-crashworthy device to develop Tension where there is no opportunity for end-on impacts

(AT-1 – Anchor Terminal – no cable)

GREA – Guardrail End Anchor – crashworthy Pre-MASH devices

GREU – Guardrail End Unit – crashworthy MASH approved devices

End Treatments

Flared End Treatments

Historically used, most recently the SRT and FLEAT

Solutions (1088) Lindsay Guardrail and MASH tested;Telescoping, tension-based guardrail e	roduct ID (ex. NPYY-	xxxx):						
Product Group: Guardrail and Delineators (862)(1088) Product Category: End Treatments Product Status: Product ID Plant ID Company Name Product Group: Product Group: Product ID Plant ID Company Name Product Group: Product Grou								
Product Category: End Treatments Image: Company Name Product Status: Product Status: Product Status: Product Status: Description Product ID Plant ID Plant ID Company Name Product Group Integration Status: Product Category: Product Category: Product Name Model Number Product Status Description PP11-5773 Road Systems, Inc. Guardrail and Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal PP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved Telescoping, tension-based terminar wort an energy absorbing coupler that features a cutting tooth design freatments Solutions P12-72848 GR44 Transportation Solutions Guardrail and Delineators (862) (1088) End Treatments Max-Tension End Treatments Solutions MASH tested;Telescoping, tension-based guardrail end Treatments Solutions								
Product Status: Image: Company Name Product Group Product Category Product Name Model Number Product Status Description IP11-5773 Road Systems, Inc. Guardrail and Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal IP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal IP12-7848 GR44 Transportation Solutions Delineators (862) End Treatments End Treatments Max-Tension End Treatment Approved MASH tested; Telescoping, tension-based guardrail end terminal IP12-7848 GR44 Transportation Delineators (862) End Treatments Max-Tension End Treatment Approved MASH tested; Telescoping, tension-based guardrail end terminal with an energy absorbing coupler that features a cutting tooth design.				38)	•			
Product ID Plant ID Company Name Product Group Product Category Product Name Model Number Product Status Description NP11-5773 Road Systems, Inc. Guardrail and Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved Tescoping, tension-based terminal with an energy absorbing coupler that features a cutting tooth design NP17-7849 GR44 Catadrail and Solutions Max-Tension End Treatment Approved MASH tested; Telescoping, tension-based guardrail end terminal with an energy absorbing coupler that features a cutting tooth design.			nts 🔹					
NP11-5773 Road Systems, Inc. Guardrail and Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments Max-Tension End Treatment Approved MASH tested; Telescoping, tension-based guardrail end terminal with an energy absorbing coupler that features a cutting tooth design.	Product S	Status:	,					
IP11-5773 Road Systems, Inc. Guardrail and Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal IP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved MASH tested, Guardrail End Terminal IP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved MASH tested; Guardrail End Terminal IP17-7848 GR44 Lindsay Transportation Solutions Guardrail and Delineators (862) (1088) End Treatments Max-Tension End Treatment Approved MASH tested;Telescoping, tension-based guardrail end terminal with an energy absorbing coupler that feature a cutting tooth design.								
NP11-5773 Road Systems, Inc. Guardrail and Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved MASH tested; Guardrail End Terminal NP17-7848 GR44 Lindsay Transportation Solutions Guardrail and Delineators (862) (1088) End Treatments Max-Tension End Treatment Approved MASH tested;Telescoping, tension-based guardrail end terminal with an energy absorbing coupler that feature a cutting tooth design.								
NP11-5773 Road Systems, Inc. Delineators (862) (1088) End Treatments MFLEAT Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved MASH tested, Guardrail End Terminal NP18-8095 Transportation Solutions Delineators (862) (1088) End Treatments MAX-Tension Median Guardrail Terminal Approved MASH tested; Guardrail End Terminal absorbing coupler that features a cutting tooth design NP17-7848 GR44 Transportation Solutions Guardrail and Delineators (862) End Treatments Max-Tension End Treatment Approved MASH tested;Telescoping, tension-based guardrail end terminal with an energy absorbing coupler that features a cutting tooth design.	Product ID Plant II	<u> Company Name</u>	Product Group	Product Category	Product Name	Model Number	Product Status	Description
P18-8095 Transportation Solutions Delineators (862) (1088) End Treatments Max-rension Median Guardrail Terminal Approved Terescoping, tension-based terminal with an energy absorbing coupler that features a cutting tooth design P17-7848 GR44 Transportation Solutions Guardrail and Delineators (862) End Treatments Max-Tension End Treatment Approved MASH tested;Telescoping, tension-based guardrail eterminal with an energy absorbing coupler that features a cutting tooth design.	P <u>11-5773</u>		Delineators (862)	End Treatments	MFLEAT		Approved	MASH tested, Guardrail End Terminal
IP18-8095 Transportation Delineators (862) End Treatments Guardrail Terminal Approved absorbing coupler that features a cutting tooth designed Solutions (1088) Guardrail and Max-Tension End MASH tested;Telescoping, tension-based guardrail eatures IP17-7848 GR44 Transportation Delineators (862) End Treatments Max-Tension End Approved MASH tested;Telescoping, tension-based guardrail eatures IP17-7848 GR44 Transportation Delineators (862) End Treatments Max-Tension End Approved terminal with an energy absorbing coupler that features Solutions (1088) Treatment Approved terminal with an energy absorbing coupler that features		the first	Conductional					
IP17-7848 GR44 Transportation Delineators (862) End Treatments Treatment Approved terminal with an energy absorbing coupler that featu Solutions (1088) a cutting tooth design.	IP18-8095			End Treatments			Approved	absorbing coupler that features a cutting tooth design.
https://apps.ncdot.gov/vendor/approvedproducts/	IP17-7848 GR44	Transportation	Delineators (862)	End Treatments				MASH tested; Telescoping, tension-based guardrail end terminal with an energy absorbing coupler that feature a cutting tooth design.
	httpc	·//an	nc ncd		Wond	or/ar	nrov	vodproducts/
	Πιιρο	.//ap	<u>95.11CU</u>	<u> </u>			<u>, </u>	<u>euproducts/</u>

Flared End Treatment: Energy Absorbing

MFLEAT MASH Version of FLEAT (MASH 16)

- Curls the rail (by kinking) tightly towards the roadway.
- Steel post system; BLON at 4th Post
- TL-3 at 39' 7" straight flared length. 3-ft. offset.
- Cable-anchored, compression system

BLON – Beginning Length of Need

Ref: FHWA Eligibility Letter CC-143 dated 04/10/19

MASH MFLEAT

Flared End Treatment: Non-energy-Absorbing

> MASH SRT (Slotted Rail Terminal)

 W-Beam rails on a straight line and horizontal slots in rail

Session 4

- Offset 4'; 31" Height
- 37'-6" long, BLON at Post 4
- Cable-anchored system
 Not currently on APL

Ref: FHWA Eligibility Letter CC-140 dated 12/19/17

MASH Test 3-31: SRT

Because of the non-energy absorption, no hazard should exist within 150' downstream of post #1

Flared End Treatments on Flared Standard Run

The flare of the end treatment is measured from a line parallel to the ROADWAY:

For Energy Absorbing (MFLEAT) which has a 13:1 flare, there may need to be a "kink" either toward or away from the roadway, depending on the flare of the standard guardrail

For the SRT MASH, the offsets are measured from a line parallel to the roadway.

NCDOT guidance is to provide 25' of parallel guardrail in advance of any end treatment requiring a kink.

Flared End Treatments on Flared Standard Run SRT MASH - Schematic

Flared End Treatment Selection

- The contractor may choose any system on the Approved Product List meeting the design requirements
 - One is energy absorbing (currently MFLEAT)
 - One could be non-energy absorbing (SRT)

CDOT

What is **important** is to understand how the system works –a **FLARED** system should only be allowed if criteria have been met (LON and grading)

Session 4

Tangent End Treatment

					Business	DMV	Newsroom	Programs			
	Approved Resource	Approved Resources		Business » Approved Products List							
	Product Listing			ex. NPYY-xxxx):		1					
	Seeds			company Name:							
	Producer/Suppl	ior		Product Name:							
			1	Product Group:		-		•			
	Technician Certi	fication		oduct Category:	End Treatments	, Type MAS	SH-16	*			
	Minimum Samp	ling Guide		Product Status:	Search Reset						
Product ID P	lant ID <u>Company Name</u>	Product Grou	p Product Categor	y Product Name	Model Number Pr	oduct Statu	s Description				
<u>NP17-7819</u>	Trinity Highway Products	Guardrail and Delineators (862)(1088)	End Treatments, Type MASH-16	SoftStop Mash End Terminal	Aţ	proved	MASH tested;All steel galv 31" W-Beam system.	anized tangent end terminal for use wi			
<u>NP17-7851</u>	Road Systems, Inc.	Guardrail and Delineators (862)(1088)	End Treatments, Type MASH-16	MSKT	Aŗ	proved	MASH tested;Guardrail En	d Terminal			
<u>NP18-8257</u>	SPIG Industry, LLC	Guardrail and Delineators (862)(1088)	End Treatments, Type MASH-16	SGET	Aţ	proved	The SGET (SPIG Gating End Terminal) is a gating guardrail end terminal system in which an impact upon the head causes the head to move down the guardrail and dissipate the energy of th impact. The SGET system also deflects vehicles back onto the roadway				

Tangent End Treatment: Energy Absorbing

Section 24 Notes and Section 25 Notes (MASH 16)

- Kinks Guardrail when hit head-on or at a shallow angle
- Steel post system; BLON at 3rd Post
- TL-3 at 47' long; attachment to 31" Guardrail
- Cable-anchored system, Compression system

 PROVIDE A MINIMUM OF 12'-6" OF 31" W-BEAM GUARDRAIL BETWEEN THE GUARDRAIL TERMINAL AND A GUARDRAIL TRANSITION.

Session 4

MASH MSKT

Session 4

LISta
Tangent End Treatment: Energy Absorbing

Soft Stop (MASH 16)

- Impact head slides along panels, crushing them vertically, absorbing the energy of the vehicle in shallow angle impacts – works in tension
- TL-3 at 51' long; BLON at 16'-6"; 31" only

Session 4

MASH Soft Stop

The

MASH SGET

Session 4

4-42

NORTH CAROLINA

Tangent End Treatment: Energy Absorbing

MAX-Tension (MASH 16)

- The MAX system utilizes tensioned cables, telescoping panels, and a cutting tooth to absorb the kinetic energy and safely contain or redirect impacting – works primarily in tension
- TL-3 at 50' long; BLON at 9'-4 ½"; 31" only

Also on APL under a different category – End Treatments

MASH MAX-Tension

Session 4

LIGHT

Tangent End Treatments on Flared Standard Run

The offset of the end treatment is measured from a line parallel to the ROADWAY:

If the standard flare is 25:1 or flatter, the end treatment may be placed on the standard flare line extended

If the standard flare is sharper than 25:1, a kink in the run must be provided so the end treatment is no sharper than 25:1

NCDOT guidance is to provide 25' of parallel guardrail in advance of any end treatment requiring a kink.

Tangent End Treatments on Flared Standard Run Schematic

End Treatment Grading

- Special grading requirements for guardrail end treatments:
 - Flat terrain (10:1 or flatter) is required in ADVANCE of all end treatments so that vehicles are relatively stable on approach
 - Flat grading must extend *behind* post 1 (ADJACENT) so vehicle is stable at impact <u>and</u> stub height criteria is satisfied

Ref: FHWA Memorandum, Roadside Safety Hardware, May 26, 2015 with attachment and Ref: AASHTO Roadside Design Guide, 4th Edition, Section 8.3.3.

Stub Height Criteria

RDG Figure 4.1

Ref: AASHTO Roadside Design Guide, 4th Edition – Figure 4.1

End Treatment Grading Requirements

- Runout Distance Grading refers to the area into which a vehicle may travel after impacting a terminal ahead of its length-of-need point.
 - The lateral runout distance directly behind a terminal ideally should be at least as wide as the roadside clear distance immediately upstream of terminal.
 - The minimum recovery obstacle-free area behind and beyond a terminal should be approximately 75 ft. long.

Ref: AASHTO Roadside Design Guide, 4th Edition, Section 8.3.3.

a – Extend out to clear zone when practical; if not, it should be at least as wide as area upstream of the end treatment.

Session 4

b – LON Required; when LON cannot be provided due to site conditions, a minimum of 75' from post 1 may be acceptable

Flared End Treatment Grading - AASHTO

Figure 8-2. Grading for Flared Guardrail Terminal

End Treatments (Anchorages, Terminals, and Crash Cushions) 8-5

Must have this full grading if a flared end treatment is used

Tangent End Treatment Grading - AASHTO

ALTERNATIVE GRADING

Note: The preferred grading layout should be used when practical. However, if necessary because of site limitations, the alternative grading layout may be used when upgrading an existing terminal.

Figure 8-3. Grading for Tangent Guardrail Terminal

PRE-ASSESSMENT PHOTO

NORTH CAROLINA

Tangent End Treatment Grading - NCDOT

Need special Borrow bid item for 3R projects

Need Special Provision for Density

PRE-ASSESSMENT PHOTO

No Stub problem, but could be better

Session 4

Substandard Grading – DOCUMENT

Thing to Remember about End Treatments

Non-Energy Absorbing End Treatments will not shield objects directly behind and within End Treatment limits

Session 4

4-57

Thing to Remember about End Treatments

Even Energy Absorbing End Treatment will not shield objects directly behind and within End Treatment limits

Session 4

Suggested FHWA End Treatment Selection Flow Chart

EXISTING END TREATMENTS

Tangent Guardrail End Treatment Energy Absorbing

SKT 350 (Sequential Kinking Terminal)(NCHRP 350)

- Kinks panels when hit head-on or at a shallow angle
- Wood or Steel post system (many options)
- TL-3 at 50' long; BLON at 3rd Post
- Cable-anchored, Compression system

Ref: FHWA Eligibility Letter CC-88 dated 3/8/05

Tangent Guardrail End Treatment Energy Absorbing

- ET Plus (Guardrail Extruder Terminal)(NCHRP 350)
 - Flattens the rail element when hit head-on
 - Weakened wood or steel posts (several options available)
 - 50' long; attaches to either height w-beam system
 - BLON at 3rd Post
 - Cable-anchored, compression system

Ref: FHWA Eligibility Letter CC-12Q dated 3/15/10

4-62

Session 4

Non-crashworthy End Treatment

Blunt End

I I STATE TO THE IN

Non-crashworthy End Treatment

Turndown

4-64

Turndown

Session 4

and estimates

Non-crashworthy End Treatment

BCT Terminal

Breakaway Cable Terminal (BCT) NCHRP 230

- W-Beam rail with a parabolic curve and 4-ft offset.
- No impact head or ground strut between the two end posts.
- Only two breakaway posts.
- Rail bolted to all posts.

For Identification Only

Non-crashworthy End Treatment

BCT Terminal

ALL THE ALL

Session 4

Guardrail End Treatments: Non-energy Absorbing – For Identification Only

- MELT Modified Eccentric Loader Terminal
 - W-Beam rail with an accentuated parabolic curve and 4-ft offset.
 - Strut between the steel tubes foundation of the two end posts
 - 37'-6" long with 8 breakaway posts; BLON at Post #3.
 - No rail-to-post bolts except at posts 1 and 8 and beyond.

For Identification Only

(NCHRP 350 TL-2)

Guardrail End Treatments: W-Beam Median

						Busine	iss Di	Ne Ne	ewsroom	Programs
	A	Approved Resources Product Listing		Business » Approved Products List						
				Product ID (ex. NPYY-xxxx): Company Name: Product Name: Product Group: Product Category:						
	3									
						End Trea	tmonte			
	Minimum Sampling Guide		Product Status:		•			Search Reset		
Product ID F	Plant 1	<u>ID</u> <u>Company Name</u>	Product Group	Product Category	Product I	<u>Name</u>	Model Number	Product Status	<u>Description</u>	
<u>NP11-5773</u>		Road Systems, Inc.	Guardrail and Delineators (862) (1088)	End Treatments	MFLEAT			Approved	MASH tested,	Guardrail End Terminal
<u>NP17-7848</u> 0	GR44	Lindsay Transportation Solutions	Guardrail and Delineators (862) (1088)	End Treatments	Max-Tensi Treatment			Approved		Felescoping, tension-based guardrail an energy absorbing coupler that feat 1 design.
<u>NP18-8095</u>		Lindsay Transportation Solutions	Guardrail and Delineators (862) (1088)	End Treatments	MAX-Tension Median Guardrail Terminal			Approved	Telescoping, tension-based terminal with an energy absorbing coupler that features a cutting tooth design	

Guardrail End Treatments: W-Beam Median

MAX-Tension Median (MASH 16)

- The MAX system utilizes tensioned cables, telescoping panels, and a cutting tooth to absorb the kinetic energy and safely contain or redirect impacting – works primarily in tension
- TL-3 at ~50' long; BLON at Post 3 (~13'-4"); 31" only

Session 4

4-70

MASH MAX-Tension Median

Impact Attenuator

Crash test with blunt end:

Welcome To NORTH CAROLINA KHERKE HART FILLART THE STATE TIME

4-72

Impact Attenuator

Crash test with ramped end:

Welcome To NORTH CAROLINA

Session 4

Impact Attenuator Theory

Harder back section to bring a pick-up truck to a controlled stop

Impact Attenuator, Sacrificial - Water Filled

Water-filled Barriers

Absorb M (MASH) / Sled(MASH) / ACZ 350 / TRITON CET

- Individual crash cushion designs vary by manufacturer, but they all function in a similar manner.
- Vehicles impacting the nose at an angle will not be redirected.
- No appreciable re-directive capability under most impact conditions.
- Typically used in work zones to shield temporary concrete barrier.

Impact Attenuator, Sacrificial - Water Filled

ts List	
WZTC - Category III	
	WZTC - Category III

<u>NP11-5771</u>	Lindsay Transportation Solutions	Work Zone Traffic Control	WZTC - Category III	Absorb 350		Approved for Provisional Use	*Must be approved by Steve Kite (919-814-4937) prior to use on NCDOT project.* The ABSORB 350 is a non-redirective, gating water filled crash cushion that has been successfully tested to NCHRP Report 350 TL-2&3.
<u>NP11-5884</u>	TrafFix Devices, Inc.	Work Zone Traffic Control	WZTC - Category III	SLED	Series 45044	Approved	PE Water Filled Crash Cushion w/Galvanized Steel Cables molded inside.NCHRP-350 for Test Level 1,2or3.Use as end treatment/crash cushion.
<u>NP16-7335</u>	Trinity Highway Products	Work Zone Traffic Control	WZTC - Category III	ACZ-350 Water Filled Crash Cushion	ACZ-350	Approved for Provisional Use	The ACZ-350 is a narrow, non-redirecting TL-2 and TL-3 impact attenuator
<u>NP99-3106</u> GR10	Energy Absorption Systems, Inc.	Work Zone Traffic Control	WZTC - Category III	Triton Barrier	Triton Barrier	Approved	The Triton Barrier® is a highly portable, water-filled barrier. Performance meets the FHWA NCHRP 350 TL-2 or TL-3 (with TL-3 kit) standard for longitudinal re-directive barrier. The Triton Barrier is certified as its own end treatment.

Impact Attenuator, Sacrificial - Water Filled

Session 4

Absorb M (MASH)

Sled (MASH)

NORTH CAROLINA

ACZ-350

TRITON barrier CET

4-77

Water Filled

Session 4

LIGHT

Impact Attenuator, Sacrificial – Sand Barrel

Non-Redirective and Gating

- Individual barrel designs vary in shape by manufacturer, but they all function the same
- Arrays of sand barrels may be designed to shield any shape hazard
- Impacting vehicles will not be redirected.
- Since no re-directive capability, the corner of the hazard must be reasonably shielded.

Impact Attenuator, Sacrificial – Sand Barrel

Sand Barrels:

Energite

TrafFix Big Sandy (MASH)

4-80

Not Normally Used

CrashGard

Session 4

Sand Barrels – Good Application

4-81

Sand-Filled Array

Impact Attenuators, Non-Gating

Non-gating as follows:

- Contains and redirects vehicles impacting along the sides of the device essentially its entire length
- Contains vehicles impacting the nose either headon or at a 15° angle.
- Approved for TL-2 (350) & TL-3 systems.
- Designed to shield a point hazard; either attached or stand alone.

Impact Attenuators, Non-Gating

Approved Products List

Product ID (ex. NPYY-xxxx):		
Company Name:		
Product Name:		
Product Group:		•
Product Category:	Impact Attenuators, Non-Gating	•

<u>NP19-8389</u>	Lindsay Transportation Solutions	Guardrail and Delineators (862)(1088)	Impact Attenuators, Non- Gating	Universal TAU- M	Approved	MASH compliant re-directive, non-gating anchored, partially reusable compression-based crash cushion
------------------	--	---	---------------------------------------	---------------------	----------	--

NCHRP 350 - Allowed if Conditions Mandate

Solutions (862)(1088) Gating II and high speed a	vailable in lengths and capacities for both low applications
Trinity Highway Approved for	is test level 3 crash cushion and is avaliable in and widths. can be configured for any h application.

Impact Attenuators, Non-Gating

➤ TAU-M (MASH) and TAU IIR Systems (NCHRP 350)

- Can be attached directly to a W-beam or Thrie-beam median barrier as well as to a concrete safety shape.
- Designed to attach to a median barrier.
- Common set of parts for 36" to 102" widths in 6" increments (350)
- Consists of Thrie-beam panels, expendable (MASH) or selfrestoring (R) (350) absorbing cartridges, steel diaphragms and two cables at the bottom to provide redirection.

Impact Attenuators, Non-Gating - Typical

QuadGuard M10 Tests CC-112

Session 4

Impact Attenuators, Life Cycle

Approved Products List

Product ID (ex. NPYY-xxxx):		
Company Name:		
Product Name:		
Product Group:		•
Product Category:	Impact Attenuators, Life Cycle	

<u>NP16-7403</u>	Energy Absorption Systems, Inc.	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	MAS Quadguard Elite		Approved for Provisional Use	**Contact NCDOT Mobility and Safety Field Operations prior use at 919-773-2800**The QuadGuard Elite System offers the added value of reusable cylinders for applications with above average impact frequency. After a typical design impact, the system is
NP16-7404	Hill and Smith	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	Smart Cushion Innovations Crash Cushion	SCI100GM	Approved	Test Level III Crash Attenuator
<u>NP16-7405</u>	Hill and Smith	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	Smart Cushion Innovations Crash Cushion	SCI70GM	Approved	Test Level II Crash Attenuator
<u>NP16-7406</u>	TrafFix Devices, Inc.	Guardrail and Delineators (862)(1088)	Impact Attenuators, Life Cycle	Compressor System Crash Cushion	55000 Series	Approved	Low Maintenance, Severe-Duty, Self-Restoring, Re-Directive Impact Attenuator. NCHRP-350 approved as TL-3. Designed repeated impacts with no need for repair. For use in Uni- directional or Bi-Directional applications up to 96 wide

Impact Attenuators, Life Cycle

- SCI Smart Cushion (MASH)
 - Variable Reaction Force
 - Re-usable with minimal component replacement
 - Needs repair before next hit

Session 4

Example – Low Cost

Session 4

in itse

Impact Attenuators, Life Cycle

- QuadGuard Elite (MASH)
 - Uses High Density Polyethylene cylinders to absorb energy
 - Essentially for use in locations where a high number of hits is anticipated.

REF: FHWA Eligibility Letter CC-57E dated 12/18/15

Example - Self Restoring

4-91

Very Appropriate Use

Session 4

Review Learning Outcomes

- Understand how end treatments and impact attenuators are tested for crashworthiness
- Identify common end treatments and impact attenuators
- Understand how these systems function
- Choose the appropriate system for a specific site

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 5: Design Principles

At the end of this session, you will be able to: Understand the design principles affecting an optimal barrier installation.

Order of Preference

- 1. Remove hazard
- 2. Redesign hazard (make traversable)
- 3. Relocate hazard (move away from traffic)
- 4. Reduce Impact Severity (use breakaway design)
- 5. SHIELD hazard
- 6. Delineate hazard so motorist can avoid

Ref: AASHTO Roadside Design Guide, 4th Edition – Pg. 1-4

Barriers Must Be Less of a Hazard

Session 5

Guardrail Placement

Place AS FAR AWAY as Possible

without affecting function

Barrier Design Principles

- 1. Deflection
- 2. Slope in Front of Barrier
- 3. Guardrail and Curb
- 4. Soil Backing for Fill Locations
- 5. Flare Rate

Principle 1: Deflection

Adequate room must be left behind the barrier to allow for lateral deflection in an impact.

- If the barrier is shielding a vertical rigid object, the distance between the barrier and the object should be sufficient to avoid the vehicle impacting or snagging on the object.
- Note that, even for rigid barriers with no lateral deflection, large vehicles may roll behind the top of the barrier even if the barrier itself does not deflect.

Deflection Distance

117

Figure 5-33. Recommended Barrier Placement for Optimum Performance

Ref: AASHTO ROADSIDE DESIGN GUIDE, 4th EDITION – Figure 5-33

Deflection

Session 5

Deflection Distance - NCDOT

NOTE: WHEN OFFSET DISTANCE FROM FACE OF OBSTRUCTION TO FACE OF GUARDRAIL IS BETWEEN 3'-6" AND 5'-6", BEGIN 3'-1½" POST SPACING AT A POINT 25' BEFORE REACHING THE OBSTRUCTION AND CARRY THROUGHOUT ITS LENGTH. IF THE OFFSET IS LESS THAN 3'-6" USE CONCRETE BARRIER.

DETAIL OF RIGHT SIDE GUARDRAIL AT UNDERPASS

Session 5

5-10

Ref: NCDOT Standard Drawing 862.01, Sht 1

NCDOT

Quarter Post Spacing

Successfully tested to MASH

Deflection distance = 19"; therefore offset from face of rail is 3'

Must start stiffening at 50' before hard point: 25' of half post guardrail; 25' of quarter post guardrail

Principle 2: Slope in Front of Barrier

Any barrier may be placed anywhere on a 10H:1V or flatter slope.

Principle 2: Slope in Front of Barrier

Session 5

5-13

Vehicle is contained and redirected but shows instability

Session 5

Slope in Front of Barrier

Barrier in Sloped Median - Old System (29") ONLY -

Slope in Front of Cable Barrier

- Cable barrier may be placed anywhere on a 10:1 or flatter slope.
- Cable barrier may be placed on slopes of 6:1, but not in the area from 1 ft. to 8 ft. from the ditch bottom.

PRE-ASSESSMENT PHOTO

Barrier in Sloped Median

Barrier in a Curved Median

Which Side of the Median Should the Cable Barrier be Placed?

Barrier in a Curved Median

Principle 3: Guardrail and Curbs

PRE-ASSESSMENT PHOTO

6" Curb not acceptable for old 29" System on HS

Session 5

Welcom To NORTH CAROLINA

Guardrail and Curbs

- Curbs may function to channelize traffic, to control drainage, improve delineation, control access, and reduce erosion.
- Curbs are not adequate to prevent a vehicle from leaving the roadway; they are not a barrier.
- Use of any guardrail/curb combination where high-speed, high-angle impacts are likely should be discouraged.

Session 5

NCDOT Guardrail and Curbs

8	ROADWAY STANDARD DRAWING FOR	1-18 STATE OF
SHEET 1: 862	GUARDRAIL PLACEMENT	NORTH CAROLINA
1 of	GUARDRAIL TREATMENT AT CURB AND GUTTER	DEPT. OF TRANSPORTATION DIVISION OF HIGHWAYS
<u> </u>		RALEIGH, N.C.

Session 5

5-26

Ref: NCDOT Standard Drawings, 862.01 Sht. 11

NCDOT

Guardrail and Curbs – 29"

Session 5

31" and Curbs

Successfully tested to MASH placed 6" behind a 6" high curb at TL-3

MASH TL-3 31" Placed 6" behind 6" high Curb

Session 5

31" and Curbs

The 31" was tested with a 6" curb, 8' in front of the rail at MASH TL-3
unsuccessful

End Treatments and Curbs

As stated previously, the GRAU-350 is a tangential end unit. However, these units will be flared over the last 50 feet to provide a 1-foot offset. This minimal flare allows the terminal to be offset so that no component of the unit extends beyond the face of the guardrail. The tangential end unit should not be flared greater than a 50:1 flare rate. No curb is allowed within the limits of this unit.

GUARDRAIL ANCHOR UNITS

3-2E

End Treatments and Curbs

CURRENTLY UNDER STUDY – DO NOT BURY BEARING PLATE

Session 5

2" maximum height recommended

End Treatments and Curbs - NCDOT

GUARDRAIL AT FACE OF CURB

Ref: NCDOT Standard Drawings, 862.01 Sht. 11

The state

Careful with BCA Terminal Anchor – Don't let Bearing Plate be buried

MASH TL-2 31" 6 ft. behind curb

Session 5

Principle 4: Soil Backing For Fill Locations

Session 5

Soil Backing Recommendation

- 1. Slope can be as steep as 2:1 with 2-ft. backing in strong soil with 6 ft. posts.
- Backing can be less than 2 ft. with 2:1 slope in strong soil with 7 ft. posts. NCHRP 350 requires half post spacing – ONLY applies to 29" system

Ref: AASHTO Roadside Design Guide, 4th Edition – Figure 5.33, Pg. 5-41

Soil Backing – NCDOT

Soil Backing – NCDOT

H LITH

Soil Backing – NCDOT

H STA

31" with Posts on a 2:1 Slope

Session 5

31" with face of rail at slope break point of2:1 slope

Posts

- 8' long W6x9 posts tested
- Not recommended with Wood posts at this time
- 6'-3" post spacing

Blocks

- 8" block tested
- Not recommended without blocks at this time

31" with Posts on a 2:1 Slope

MASH Testing of MGS adjacent to a 2:1 Slope 8" blockout 8' long posts at 6'-3" spacing

Session 5

Working Width – 55.2" Eligibility Letter B-261

Roadside High Tension Cable MASH 2009 on a 2:1 Slope

Session 5

Safence

Located 8" onto the 2:1 Slope

FHWA Letter B- 276

> Working Width 7.2 ft.

> > Welcome To NORTH CAROLINA

Principle 5: Flare Rate

Session 5

Flare Rate

Flared barriers are those that are not parallel to the edge of the traveled way. They are used to:

- Locate end treatments farther from the roadway.
- Lessen driver reaction to a roadside obstacle.
- Reduce total length of rail needed.
- Reduce nuisance hits.
- When tying to a bridge rail from a farther offset (in advance of transition)

Flare Rate

Trade offs and restrictions of flared barriers:

- Flare increases the angle at which the barrier can be hit.
- Flare may increase the angle of redirection after an impact.
- Flared barriers can only be placed on 10:1 or flatter slopes.
- Maximum flare rate varies with design speed NCDOT flare rate typically 50:1

Tangent End Treatments on Flared Standard Run - <u>Repeat</u>

The offset of the end treatment is measured from a line parallel to the ROADWAY:

If the standard flare is 25:1 or flatter, the end treatment may be placed on the standard flare line extended

If the standard flare is sharper than 25:1, a kink in the run must be provided so the end treatment is no sharper than 25:1

NCDOT guidance is to provide 25' of parallel guardrail in advance of any end treatment requiring a kink.

Suggested Flare Rates

Table 5-9. Suggested Flare Rates for Barrier Design

Design	n Speed	Flare Rate for Barrier Inside	Flare Rate for Barrier at or Beyond Shy Line	
km/h	[mph]	Shy Line	Rigid Barrier	Semi -Rigid Barrier
110	[70]	30:1	20:1	15:1
100	[60]	26:1	18:1	14:1
90	[55]	24:1	16:1	12:1
80	[50]	21:1	14:1	11:1
70	[45]	18:1	12:1	10:1
60	[40]	16:1	10:1	8:1
50	[30]	13:1	8:1	7:1

Notes:

A = Suggested maximum flare rate for rigid barrier system.

B = Suggested maximum flare rate for semi-rigid barrier system.

The MGS has been tested in accordance with NCHRP Report 350 TL-3 at 5:1 flare.

Flatter flare rates for the MGS installations also are acceptable. The MGS should be installed using the flare rates shown or flatter for semi-rigid barriers beyond the shy line when installed in rock formations.

Session 5

Example of Benefit of Flare

Session 5

PRE-ASSESSMENT PHOTO

TRANSFER THE PARTY OF

Review Learning Outcomes

Understand the design principles affecting an optimal barrier installation.

North Carolina Department of Transportation Highway Safety Barrier Design Training

Session 6: Length of Need and Special Considerations

Session 6 Learning Outcomes

At the end of this session, you will be able to:

- Define the Length of Need and apply the design principles for an optimal installation
- Modify guardrail for special situations

Order of Preference

- 1. Remove hazard
- 2. Redesign hazard (make traversable)
- 3. Relocate hazard (move away from traffic)
- 4. Reduce Impact Severity (use breakaway design)
- 5. SHIELD hazard
- 6. Delineate hazard so motorist can avoid

Ref: AASHTO Roadside Design Guide, 4th Edition – Pg. 1-4

Length of Need (LON) Definition

AASHTO

The length of effective barrier needed IN ADVANCE OF the hazard to intercept and redirect an encroaching vehicle.

Will be replaced with **AASHTO RDG** values DUT LENGTH L SHOULDER WIDTH (WIDTH OF SHOULDER FROM EDGE OF TRAVEL OF CLIARDRA DETAIL 3-2A

Session 6

Runout Lengths - AASHTO

Table 5-10(b). Suggested Runout Lengths for Barrier Design (U.S. Customary Units)

Design Speed (mph)	Runout Length (L _R) Given Traffic Volume (ADT) (ft)				
	Over 10,000	5,000 to 10,000	1,000 to 5,000	Under 1,000	
80	470	430	380	330	
70	360	330	290	250	
60	300	250	210	200	
50	230	190	160	150	
40	160	130	110	100	
30	110	90	80	70	

Session 6

6-7

Ref: AASHTO ROADSIDE DESIGN GUIDE, 4th EDITION – TABLE 5.10, Pg. 5-50

Length of Need - AASHTO

- Calculating the length of need (X) for straight or nearly straight sections of roadway:
 - For <u>flared</u> guardrail installations:

$$X = \frac{L_{A} + (b/a) (L_{1}) - L_{2}}{(b/a) + (L_{A}/L_{R})}$$

Session 6

• For parallel guardrail installations:

$$X = \frac{L_A - L_2}{L_A/L_R}$$

DOT

Ref: AASHTO Roadside Design Guide, 4th Edition, Equation 5-1 and 5-2, Pg 5-51

LON Design Procedure for

Approach Barrier Layout

Ref: AASHTO Roadside Design Guide, 4th Edition, Figure 5.39, Pg. 5-49

Length of Need – NCDOT

DETAIL 3-2A

- itte

Length of Need – NCDOT

Calculating the length of need (L) for straight or nearly straight sections of roadway (parallel installation):

$$L = LH - (N + 0.75) + 12.50 + 15'$$

LH/LR

The formulas and details are derived from Chapter 5 in the Roadside Design Guide.

Length of Need for Bridge Approach

- Willie

Session 6

6-12

and LIFES

THE DESIGN LAYOUT FOR LENGTHS SHOWN ON THIS STANDARD ARE MINIMUM DESIGN LENGTHS.

Session 6

GUARDRAIL END UNIT TYPE TL-3 (50:1 TAPER 25' TAPER

811

PAVEMENT TAPER

EDGE OF LANE

10' PAVED SHOULDER

2' . 4' PAVED

6-13

SHOULDER

Length of Need for Bridge Approach

NCDOT – Dual Bridges

SHOULDER LINE

50:1 OR FLATTER FLARE RATE

STRUCTURE ANCHOR

INTT PARALLEL TO LANS

AREA TO BE PAVED ONLY WHEN RIGHT PAVED SHOULDER IS 10

TTEEC

THE DESIGN LAYOUT FOR LENGTHS SHOWN ON THIS STANDARD ARE MINIMUM DESIGN LENGTHS.

Length of Need for Fill Slope

"L" OR LENGTH OF NEED ON THE APPROACH SIDE OF THE GUARDRAIL FOR A FILL SLOPE WARRANT FOR ANY CLASSIFICATION OF ROADWAY

DESIGN SPEED (MPH)	70	60	50	40
*L (FT.)	150′	125'	100′	75'

These are quite short compared to AASHTO

A LI LI LI

DETAIL 3 - 2C

LON Design for Opposing Traffic

Session 6

Ref: AASHTO Roadside Design Guide, 4th Edition, Figure 5.42, Pg. 5-54

Length of Need on the Outside of a Horizontal Curve

Length of Need on the Inside of a Horizontal Curve

Energy–Absorbing terminal on a curve

Energy-Absorbing terminals must be installed in a straight line over the length of the terminal proper. This may require the barrier to be extended in advance of the curve.

Step 1: Identify the Hazard

Step 2: Define the Point of Departure

Step 3: Intersect the Hypotenuse

Session 6

Session 6

EXIT 265 B

PRE-ASSESSMENT PHOTO

Session 6

NORTH CAROLINA

Session 6

Quick Field Check of LON

- 1. Stand on roadway edgeline opposite the upstream edge of the hazard.
- 2. Pace upstream along edgeline appropriate runout length (based on speed of roadway and traffic volume).
- 3. Turn and look at far lateral edge of hazard.
- 4. If planned (or existing) guardrail run intercepts this line of sight, it satisfies basic design length of need.
- 5. Check for ALL hazards that should be shielded in this area
- 6. Check for better terminal location by extending barrier a short distance (especially on curves!!!)

Guardrail Placement

Place as far from traffic as practical (without affecting performance)

Guardrail Placement in Special Situations

- Turnout Conflict (Side Access)
- Long Span (Omitted Post{s})
- Gaps between runs of barrier
- Extra Blocks
- Leaveouts (Blockouts) for Posts in Structural Pavement
- Guardrail Post in Rock

Guardrail Placement at Intersections

Session 6

6-35

NORTH CAROLINA

Guardrail Placement at Driveways

UNDIVIDED HIGHWAY

TxDOT MASH TL-3 Short Radius

On-going Research by Pool Fund – No Eligibility Letter

TxDOT MASH TL-3 Short Radius

NCDOT Investigating further developments

Session 6

MASH TL-3 Short Radius - NCHRP

Session 6

Omitting posts – old 29" guardrail

31" – Omitting 3 posts

31" – Omitting 3 posts

Openings in Barriers

Check with maintenance, ROW, etc

Session 6

Openings in Barriers - NCDOT

ROADWAY DESIGN MANUAL

PART 1

6-48

DETERMINING GUARDRAIL LENGTHS OF NEED	3-2

NOTE: A space of less than 300' should not be left between guardrail installations. If less than 300' remains between installations, the guardrail should be extended through the area. Again, be sure there are no conditions that would preclude closure NCDOT

Session 6

Extra Blocks – National Guidance

- Two block-outs (up to 16" deep) may be used at any time, for any number of posts.
- Three block-outs may be used at one or two posts in a section of guardrail.

Ref: AASHTO Roadside Design Guide – 3rd Edition, Section 5.4.1.6

Leaveouts in Structural Pavement

Ref: AASHTO Roadside Design Guide – 4th Edition, Figure 5-52

Guardrail Posts in Rock - NCDOT

SECTION 862 GUARDRAIL

862-3 CONSTRUCTION METHODS

Where rock interferes with the proper installation of the post, excavate a shaft in the rock at least 9 inches wide, parallel to the roadway, by 23 inches long, perpendicular to the roadway and 24 inches deep. Place the post against the roadside edge of the shaft and fill in behind the post with Class VI select material, up to the top elevation of the rock. Fill the remainder of

TRANSITION FROM OR 1'-11" TO 2'-1" W-BEAM GUARDRAIL MOUNTING HEIGHT

EET 4 OF 8	ROADWAY STANDARD DRAWING FOR GUARDRAIL INSTALLATION	DEPT. OF TRANSPORTATION DIVISION OF HIGHWAYS RALEIGH, N.C.
------------	--	--

Example – LON

DETERMINE TREATMENTS FOR NB TRAFFIC

Example – LON

Determine Design Clear Zone

The Clear Zone is a look up value from NCDOT Design Manual

Design speed: 70 mph ADT: 53,000 Side slope: 10:1 or 6:1

Design Clear Zone Distance – Fill

Session 6

Design	Docian		Foreslopes	
Speed	Design ADT	1V:6H	1V:5H to	1V:3H
(mph)	ADT	or flatter	1V:4H	10.20
40 mph	UNDER 750	7-10	7-10	b
	750-1500	10-12	12-14	b
	1500-6000	12-14	14-16	b
	OVER 6000	14-16	16-18	b
45-50	UNDER 750	10-12	12-14	b
mph	750-1500	14-16	16-20	b
	1500-6000	16-18	20-26	b
	OVER 6000	20-22	24-28	b
55 mph	UNDER 750	12-14	14-18	b
	750-1500	16-18	20-24	b
	1500-6000	20-22	24-30	b
	OVER 6000	22-24	26-32ª	b
60 mph	UNDER 750	16-18	20-24	b
	750-1500	20-24	26-32ª	b
	1500-6000	26-30	32-40 ^a	b
	OVER 6000	30-32ª	36-44 ^a	b
65-70	UNDER 750	18-20	20-26	b
mph	750-1500	24-26	28-36ª	b
	1500-6000	20.223	34-42ª	b
	OVER 6000	30-34ª	38-46ª	b

Design Speed 70 mph AADT = 53,000

LC = 32 ft.

Example – LON

Calculating the length of need (L) for straight or nearly straight sections of roadway for parallel installation:

$$L = LH - (N + 0.75) + 15$$

LH/LR

Step 2: Define the Point of Departure

Look up LR:

Design Speed 70 mph AADT = 53,000

Desig	n R	Runout Length (L _R) Given Traffic Volume (ADT) (ft)			
Speed (mph)	•	Over L0,000	5,000 to 10,000	1,000 to 5,000	Under 1,000
80		470	430	380	330
70		360	330	290	250
60		300	250	210	200
50		230	190	160	150
40		160	LR = 360 ft	. 110	100
30		110	90	80	70

Session 6

AASHTO Runout Lengths – LR

NORTH CAROLINA

Step 3: Intersect the Hypotenuse

Example – LON

Determine LH – distance to the backside of hazard

For the back of the sign support: LH = 20 + 2 = 22'

NCDOT Welcome To NORTH CAROLINA INTE LINE STATE LINE STATE LINE

N – Guardrail offset from edge of travel lane.

6-64

N = The distance from the edge of the travel lane to the face of the guardrail.
N = Minimum shoulder width for locals and collectors.
N = Usable shoulder width plus 2' to arterials, interstates and freeways.

Session 6

Calculate LON – Determine Bid Item

LH = 22 ft N = 6 ft LR = 360

Using the formula L =

 $L = \frac{LH - (N + 0.75)}{LH/LR} + 15$ $= \frac{22 - (6 + .75)}{22/360} + 15$

= 249.6 + 15 = 265 ft.

Need Terminal: GREU (50' length of unit))

Therefore 265 – 50 = 215 LF of standard barrier is required; add 2' for length of hazard; add 25' for CAT-1 effectiveness; convert to panel lengths by dividing by 12.5, rounding up to whole number, and multiplying by 12.5

A CAT-1 must be added

Calculate LON – Additional Offset

If guardrail is placed as far off as allowed:

CDOT

LH = 22 ft N = (20'-5.5') =14.5' LR = 360'

Using the formula L =

L = LH - (N + 0.75) + 15LH/LR = <u>22 - (14.5+.75)</u> + 15 22/360

= 110.5 + 15 = 126 ft.

A CAT-1 must be added

6-66

BIG savings by offsetting the barrier: 126' VS 265'

Session 6

Review Learning Outcomes

- Define the Length of Need and apply the design principles for an optimal installation
- Modify guardrail for special situations

