University of North Carolina Highway Safety Research Center e-archives

bicycles alcohol impairment access child passenger safety crashes data driver distraction crosswalks driver behavior engineering evaluation graduated drivers licensing highways injury prevention medians occupant protection motor vehicles older drivers pedestrians public health research roadway design safety seat belts school travel sidewalks transportation walking traffic

 Hunger, W.W., Reinfurt, D.W., Cyr, C.St., Stewart, J.R., Hirsch, M.G., Little, C.M., and Stutts, J.C. (1990). Analysis of Occupant Restraint Issues from State Accident Data. Chapel Hill, NC: University of North Carolina Highway Safety Research Center.

> Scanned and uploaded on January 17, 2012

This report is an electronically scanned facsimile reproduced from a manuscript contained in the HSRC archives.

ANALYSIS OF OCCUPANT RESTRAINT ISSUES FROM STATE ACCIDENT DATA

William W. Hunter Donald W. Reinfurt Cheryl St. Cyr J. Richard Stewart Margaret G. Hirsch Christine M. Little Jane C. Stutts

September 1990

NHTSA PROJECT DTNH22-87-C-07103

University of North Carolina Highway Safety Research Center Chapel Hill, N.C. 27599-3430

This research was supported (in part) by the National Highway Traffic Safety Administration (NHTSA), U.S. Department of Transportation, Under Contract No. DTNH22-87-C-07103. The opinions, findings and recommendations contained herein are those of the authors, and do not necessarily represent those of the NHTSA.

and the second second

Attachment No.

•		Technical Report Documentation Pag		
1. 2000-1 No -	2 Government Accession No.	3. Rocipiont's Catalog No.		
Analysis of Occupant Restr State Accident Data	aint Issues from	S. Report Date November '1990 C. Performing Organization Code		
7 A.mer + W.W. Hunter, D.W. Re J.R. Stewart, M.G. Hirsch, C	infurt, C. St.Cyr, .M. Little, and J.C. Stutts	HSRC-TR75		
. Perleman Organization None and Address Highway Safety Research Cen	10. Wois Unit No (TRAIS)			
University of North Carolin CB #3430	11 Convert or Grant No. DTNH22-87-C-07103			
Chapel Hill, N.C. 27599-34	13. Type of Report and Pointd Courted Final Report May 1, 1987 through September 30, 1990			
Washington, D.C. 20590	14. Spanzaring Agenty Code			
13. Supplementary Hotes				

16 Aastiet

Using police-reported crash data from a variety of states, this three-year project (1987-1990) dealt with a series of occupant restraint questions defined by NHTSA, plus other topical issues that emerged, such as the use of automatic restraints in the population. Data for the analysis were derived from a multiyear 18-state data base that resides at NHTSA, plus data from the State of North Carolina. A confounding factor in the analysis was the worse than expected quality of the reported belt use data in accidents contained in the individual state data bases, a problem sometimes referred to as the "lie factor" in police-reported belt use. Because of motorists falsely claiming belt use with the passage of mandatory belt use laws, some of the originally planned analyses were substituted for analyses where belt use status was not required.

Topics covered in this report include injuries to restrained and unrestrained occupants, the effect of a state seat belt law on use, the effect of a mandatory belt law on injury and fatality reduction using time series analysis of Ohio and Louisiana injury data, ejection trends in Maryland before and after the mandatory belt law, results of an on-road survey of automatic seat belt use and misuse in North Carolina, and an investigation of the double pair method of Evans (1986) for examining seat belt effectiveness.

17. Key Were Seat belt use, occupant restraint, injury, traffic crashes		10. Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161				
19. Security Classil, (at mis report)	20. Security Class	oil, (of this page)	21. No. of Poges	22. Piico		
Unclassified	Unclassifi	ed	239			

Form DOT F 1700.7 (1-72) Reproduction of form and completed page is authorized

TABLE OF CONTENTS

	Page
TECHNICAL SUMMARY	v
CHAPTER 1. INTRODUCTION	1-1
Overview	1-1
Background	1-1
Data Acquisition and Management	1-3
Project Limitations	1-4
Poport Composition	1-4
	1-4
CHAPTER 2. HOW ARE RESTRAINED PEOPLE INJURED?	2-1
New Jersey – Pennsylvania Comparisons	2-1
Trends Across Time	2-3
KABCO - Like Results	2-3
Injury Type	2-5
Injury Percentage Reductions	2-5
A Comparison of Rollover and Non-Rollover Accidents	2-10
A Comparison of Hoad-On and Non-Hoad-On Accidents	2-16
A comparison of Single-Vabiale and Multi-Nabiale Assidants	2-10
A comparison of Single-venicle and Multi-venicle Accidents	2-20
Real or Reporting Changes	2-20
Restrained Occupant Injury Trends Using Indiana Data	2-34
KABCO - Like Results	2-35
	2 35
A Company spectrum and New Dellaway Accidents	2-33
A comparison of Rollover and Non-Rollover Accidents	2-39
A Comparison of Head-Un and Non-Head-Un Accidents	2-39
A Comparison of Single-Vehicle and Multi-Vehicle Accidents	2-47
Summary	2-47
A Comparison of Restrained and Unrestrained Occupants	2-47
Overall Results	2-53
Bollover Accidents	2-55
Norrover Accidents	2-62
	2-02
Single venicle vs multiple venicle Accidents	2-/1
Ejection Accidents	2-71
Comparison of Males and Females	2-79
CHAPTER 3. HOW DOES A STATE LAW AFFECT BELT USE?	3-1
Background	3-1
Accident Versus Population-at-Risk Belt Usage	3-2
Adjustment Procedures	3-9
The Ouestion of Unknown Belt Use	3-13
Conclusions	3-16
	5 10
CHAPTER 4. TIME SERIES ANALYSIS OF STATE INJURY DATA	4-1
Ohio Injury Data	4-1
Louisiana Injury Data	4-10

CHAPTER 5.	EFFECT	IVENESS	OF A	STAT	E M	ANDAT(BEL		E LA	W I	N			F 1
	REDUCI	NG EJECI	TONS	IN M	010	K VER.	ICLI	LOR	ASHE	>.	•	•••	•••	•	2-1
Backgro	und			• •				• •	• •		•	•••			5-1
Method				• •	•••			• •	• •		•		• •	•	5-2
Results								• •	• •		•	• •			5-6
Conclus	ion		• •	••	•••	• •	•••	•••	••	• •	•	•••	•••	•	5-10
CHAPTER 6.	USAGE	PATTERNS	AND	MISU	SE I	RATES	OF	AUT	OMAT:	IC S	EAT	BE	LTS		
	BY SYS	TEM TYPE		• •	• •	• •	••	• •	• •	• •	•	•••	•••	•	6-1
Backgro	und		• •	• •					• •		•			•	6-1
Method					• •				• •		•				6-4
Results				•							•			•	6-6
Discuss	ion		• •	•	-	• •	• •	• •	• •	• •	•	• •	• •	•	6-15
CHAPTER 7	AN TNU	TSTICATI		มาก ฉ		31.F	ΡΔΤΙ		тнор	FOR	1				
	EXAMIN	ING SEAT	BEL	T EF.		VENE	SS	•••			•		•••	•	7-1
Backgro	ound and	Data .													7-1
Double	Pair Co	mparison													7-2
Met	hod														7-2
Res	ults .		•••	•••	• •	• •	•••	• •	• •	• •	•	•••	•••	•	7-3
Traditi	onal Es	timates	ofE	ffect	ive	ness									7-6
Met	hod						•••	•••		•••	•		•••	•	7-6
Ove	rall Ec	timates	•••			•••	•••	•••		•••	•	•••	•••	•	7-6
i bA	usted E	stimates	•••	•••	•••	•••	•••	•••	•••	•••	•		•••	•	7-6
Res	ults .			•••	•••	•••	•••	•••	•••	•••	•	•••	•••	•	7-9
Discuss	ion		••	••	• •		•••	••	•••	•••	•	•••		•	7-10
REFERENCES			•••	• •				• •	•••		•		•••	•	R-1
APPENDIX A:	Data	for New	Jers	ey an	d P	ennsy	lva	nia			•			•	A-1
APPENDIX B:	Data	for Indi	ana	•••			•••		• •		•			•	B-1

TECHNICAL SUMMARY

Background and Objectives

In the United States over the last two and a half decades, much has been accomplished in terms of occupant injury reduction due to changes in the vehicle, improvements in roadway crashworthiness, and to some extent, modification of the driver's behavior. It is somewhat paradoxical that this decrease in injuries has occurred without the widespread national use of occupant restraints, even though restraints have existed in a great majority of our vehicles for nearly two decades. Thus, the potential for additional safety enhancements seems highly promising if an increase in occupant restraint use is realized.

This report is the product of a three-year project (May 1, 1987 -September 30, 1990) that has focused on questions pertaining to occupant restraints. Using police-reported crash data from a variety of states, the project was primarily concerned with answering a series of occupant restraint questions, plus other topical issues that emerged in regard to restraints. Below are the five questions that were listed in the original solicitation that were candidates for analysis:

- 1. How effective are restraints?
- 2. How are restrained people injured?
- 3. How can restraints be improved?
- 4. Who is using restraints?
- 5. How does a State law affect use of restraints?

Method

Data for the analysis were derived from a multi-year 18-state data base that resides sat NHTSA. North Carolina is not included in the NHTSA data base; nevertheless, these data were available for use in this project.

A confounding factor in the analysis was the worse than expected quality of the reported belt use data in accidents contained in the individual state data bases, a problem sometimes referred to as the "lie factor" in policereported belt use. Because of motorists falsely claiming belt use with the passage of mandatory belt use laws, some of the originally planned analyses were substituted for analyses where new and reliable data were collected.

Results

Injuries to Restrained and Unrestrained Occupants. To examine injuries to restrained and unrestrained occupants, data from 1984-1986 for New Jersey, whose belt law and enforcement became effective March 1985, were contrasted to similar data for Pennsylvania, a proximate state without a belt law in 1984-1986. In general, covered occupants in New Jersey tended to experience <u>less</u> A+K injuries, bleeding injuries, concussions, fractures/broken bones, head, and face injuries. The New Jersey covered occupants experienced <u>more</u> neck, chest/abdomen and complaint of pain injuries. These findings generally held across a variety of accident types.

Indiana injury data from 1985-1988 were similarly examined (belt law effective July 1987). Like New Jersey, head and face injuries tended to decline over time, and neck and chest/abdomen/pelvis injuries tended to increase. This tendency was present for the different crash types examined. However, most of these changes appeared to be long term and not directly associated with the seat belt law.

To further address the question of how restrained people are injured, prelaw 1984 accident data for New Jersey and Pennsylvania were used in order to minimize the bias in police-reported use rates found after the introduction of a belt law. Not surprisingly, when seat belts were used the odds of sustaining a major injury or being killed were about half as much as when belts were not used. The percentage of head and face injuries was clearly smaller when belts were used, while a slightly larger percentage of belted occupants sustained chest/abdomen injuries than unbelted occupants.

<u>Effects of State Law on Belt Use</u>. Assessing the effect of belt use changes in accident data is not as straightforward now that the "lie factor" is an issue. Unfortunately, the police officer often relies on the response given by the accident victim, rather than looking for additional evidence of belt use.

This analysis was primarily concerned with comparing accident versus population-at-risk belt usage from North Carolina data. Results show that effects of the "lie factor" are prevalent throughout the crash data, including: (1) crashes investigated by the Highway Patrol (as well as all other crashes), (2) crashes distributed by race and sex groups, and (3) fatal crashes. Thus, analyses involving changes in mortality and morbidity arising from seat belt

-vi -

laws need to be designed so that reported belt use in the crash is ignored (e.g., using time series to examine long term injury patterns).

<u>Time Series Analysis of Ohio and Louisiana Injury Data</u>. Accident victims were classified as either "covered occupants" or "not covered others" and structural time series models of the form used by Harry and Durbin (1986) in their evaluation of seat belt legislation in Great Britain were used to analyze these data series covering 1982-1987.

In Ohio the belt use rate rose from about 15 percent pre-law to about 47 percent just after enforcement. However, there was no evidence of a reduction in motor vehicle related injuries at any severity level as a result of the seat belt law. In Louisiana the belt use rate rose from about 12 percent pre-law to about 36 percent post-law. Statistically significant decreases were shown for both the percent killed and percent killed or seriously injured series for "covered occupants." No significant intervention effects were found for the "not covered" series, nor for two series focusing on ejection.

<u>Effectiveness of a Belt Law in Reducing Ejection</u>. Due to overreporting of belt use in accidents, the alternative indirect approach of examining ejection trends was used with Maryland data as a measure of effectiveness of the belt law, since the ejection rate should decrease as reported and observed belt use increases.

Besides examining ejection rates in injury related crashes, other variables receiving close scrutiny included overturns, fixed-object crashes, and vehicle wheelbase. As population belt use increased in Maryland during the study period, ejection rates for both drivers and right front passengers decreased, and the largest decreases were obtained after passage of the belt law. The driver ejection rate in overturn crashes was similar. Regardless of wheelbase greater than or equal to 102 inches, the ejection rates decreased during the study period. Ejections in fixed-object crashes showed no clear trend.

<u>Usage Patterns and Misuse Rates of Automatic Seat Belts by System Type</u>. Since relatively little is known about the use and misuse of automatic seat belts, observational data were gathered as part of North Carolina's on-going statewide seat belt survey. Over 4,000 observations were obtained during three sampling periods. License plate and vehicle description data were used to obtain the vehicle identification number (VIN), from which belt system type was obtained. Shoulder belt usage rates for all systems (automatic belts 79.6 percent, air bags 73.9 percent, manual belts 76.3 percent) considerably exceeded the statewide average of approximately 60 percent largely because these vehicles are nearly all new model cars. Within the automatic belt group, usage was highest (94.2 percent) for the motorized automatic shoulder/manual lap belt system, intermediate (83.8%) for the non-motorized system with automatic shoulder belts, and lowest (76.9%) for the non-motorized automatic shoulder/automatic lap belt system. The results seen in North Carolina are quite consistent with the 19-city U.S. DOT survey rates of 97.2 percent, 81.3 percent, and 76.9 percent, respectively.

In regard to misuse, only 30 percent of the drivers having a motorized shoulder belt were also using the available manual lap belt. The three-point non-motorized automatic belt systems were defeated nearly 25 percent of the time. Further, drivers under age 25 had lower use rates than other age groups except for the case of manual belts. Males and females used automatic belts with about the same frequency. Correct use rates for non-white drivers were lower than for their white counterparts.

Double Pair Versus Traditional Belt Effectiveness Estimates. The double pair comparison procedure was utilized by Evans (1986) to determine how occupant characteristics affect fatality risks in traffic crashes. This method, which originally used data from the Fatal Accident Reporting System (FARS), compares pairs of occupants in the same vehicle. By utilizing the fatality risk of an "other" occupant in the same vehicle, the procedure controls for many vehicle and roadway factors.

The analysis in this report, which uses the reliable seat belt data from NCSS, estimates seat belt effectiveness for the driver and right front passenger in reducing moderate, serious, and severe injuries (AIS \geq 2, AIS \geq 3, and AIS \geq 4, respectively). The procedure yields estimates of 36 to 66 percent effectiveness over these categories.

The findings by this technique are compared to traditional estimates controlling for crash severity (Partyka, 1988). The results of the double pair analysis are generally higher than the traditional approximations with regard to seat belt effectiveness. Further, adjusting for damage type typically produces the lowest estimates of belt effectiveness.

CHAPTER 1. INTRODUCTION

<u>Overview</u>

This report is the product of a three-year project that has focused on questions pertaining to occupant restraints. The project officially began on May 1, 1987, and ended on September 30, 1990. Interim reports describing the first and second years of effort are contained under separate cover (Hunter, Reinfurt and Hirsch, 1988, and Hunter, Reinfurt, Stewart and St. Cyr, 1989).

The project was primarily concerned with answering a series of occupant restraint questions, using police-reported crash data from a variety of states, plus other topical issues that emerged in regard to restraints, such as the use of automatic seat belts in the population. Shown below are the five questions that were listed in the original solicitation that were candidates for analysis:

- 1. How effective are restraints?
- 2. How are restrained people injured?
- 3. How can restraints be improved?
- 4. Who is using restraints?
- 5. How does a State law affect use of restraints?

Data for the analysis were derived from a multi-year 18-state data base that resides at NHTSA. The process of acquiring the data was begun some years ago by other NHTSA staff, although up to now only limited use has been made of the data. North Carolina is not included in the NHTSA data base; nevertheless, these data were available for use in this project.

Background

In the last two and a half decades, the motor vehicle death rate in the U.S. has been cut in half -- from 5.63 deaths per hundred million vehicle miles in 1964 to 2.46 in 1988 (<u>Accident Facts</u>, 1989 Edition). Our death rate is the lowest in the world, and we have achieved this superior safety record without addressing the occupant restraint issue to a significant degree until the mid 80's.

Much has been accomplished in terms of occupant injury reduction due to changes in the vehicle, improvements in roadway crashworthiness, and to some extent, modification of the driver's behavior. It is somewhat paradoxical that this decrease in injuries has occurred without the widespread national use of occupant restraints, even though restraints have existed in a great majority of our vehicles for nearly two decades. Thus, the potential for additional safety enhancements seems highly promising if an increase in occupant restraint use is realized.

There are several factors now in place that may aid the process of having more motor vehicle drivers and passengers using their available restraints. First, Federal Motor Vehicle Safety Standard (FMVSS) 208 had a major revision in 1984 that spelled out a schedule of increases in the availability of automatic restraints and/or air bags in newly manufactured passenger cars. The schedule called for passive restraints (i.e., automatic belts or bags) to be available in 10 percent of the model year 1987 cars, in 25 percent of the cars in model year 1988, in 40 percent of the cars in model year 1989, and in all of the 1990 model year cars, unless two-thirds of the U.S. population was covered by mandatory belt laws meeting certain criteria established by the U.S. DOT. Second, mandatory laws were passed in a number of states, with well over twothirds of the U.S. population being covered, but the above mentioned schedule imposed by FMVSS 208 was not rescinded as many of the laws did not meet the DOT criteria. And thirdly, the automotive manufacturers started developing new automatic belt designs that would be expected to lead to increased restraint use.

Given the present situation, there continue to be identifiable restraintrelated research needs, including:

- 1. How the increased number of mandatory belt laws affect restraint use,
- 2. The need for information on population subgroups continuing to ride unrestrained, and
- 3. The need for more information concerning the injury-related effectiveness of the various restraint designs now being marketed.

The current version of FMVSS 208 plus the enactment to date of 38 safety belt laws is an historically important set of interventions on behalf of highway safety, notwithstanding the fact that belt laws have been rescinded in Massachusetts, Nebraska, and Oregon. The monitoring of this process is therefore of utmost importance. It is essential for NHTSA and the national

research community to be able to quantify the degree of success of safety belt laws as well as safety belt designs, not only to optimize the effects of the laws, but also to optimize planning for (1) future occupant restraint systems, (2) further improvements in vehicle interior design, and (3) considerations of crashworthiness designed in highway appurtenances and other life saving treatments.

Data Acquisition and Management

During the course of the project, the following states' crash data tapes (in SAS format) were received from NHTSA by the Highway Safety Research Center (HSRC):

<u>State</u>	Years Available
Indiana	1984-1988
Kansas	1984-1986
Louisiana	1982-1987
Maryland	1984-1986
Michigan	1982-1985
New Jersey	1984-1986
Ohio	1982-1987
Pennsylvania	1984-1986
Texas	1984-1986
Washington	1982-1986

After tape copies were made, 20 to 30 individual records from each tape were printed to verify that the tapes contained usable data. Relevant fields were examined to ensure that data values were what would be expected based on the state code books. Frequency counts on many relevant fields were also made.

In general, each state's data are different enough that standardization across states is not usually possible, making it necessary to carry out analyses within states. Very similar variables across states, such as dates, position in vehicle, or injury type, could be standardized across states to an extent by naming and formatting conventions. However, most other attempts to force data sets from different states into rigid formats would not have been useful -- a lesson learned in a previous NHTSA project entitled, "Trend Analysis: State and National Accident Summary Files" (Reinfurt, Rodgman and Stutts, 1982).

Project Limitations

Analysis questions were formulated by HSRC and NHTSA staff on a year-toyear basis. During the first year of the project, emphasis was directed toward the following two questions:

- How are restrained people injured?
- How does a State law affect use of restraints?

After examining these issues, it was apparent that some of the original proposed project activity could not be explored with much chance of success. The confounding factor was the worse-than-expected quality of the reported belt use data in accidents contained in the individual state data bases, a problem sometimes referred to as the "lie factor" in police-reported belt use. Even before the project began, it was clear from North Carolina data that the officer-reported belt use status was much less reliable than it was prior to the law. More than ever, motorists falsely claimed belt usage because "it is the Law."

As an example, North Carolina is generally considered to have good traffic records data. Even with good reporting agencies, the North Carolina data in Table 1.1 show huge differences between population belt use data and the reported belt use for drivers in crashes after the initiation of a belt law. And contrary to numerous previous studies, belt use in crashes was <u>higher</u> than in the driving population throughout the citation phase.

At the project outset, it was believed that adjustments to the post-law crash data might be made based on pre-law outcomes. However, adjusting for the "lie factor" in police-reported belt use did not prove to be feasible. Thus, instead of closely following the original set of questions, HSRC and NHTSA staff had to find alternative ways of seeking answers to restraint questions when reliable belt data by age, sex, seating position, and other variables was not available.

Report Composition

What follows are chapters pertaining to the variety of restraint questions that were pursued. Topics covered include injuries to restrained and unrestrained occupants (Chapter 2), the effect of a state seat belt law on belt use (Chapter 3), the effect of a belt law on injury and fatality reduction using time series analyses of Ohio and Louisiana injury data (Chapter 4), ejection trends in Maryland before and after the mandatory belt law intended to

Belt Law Period	<u>Time Per</u>	iod	In <u>Crashes</u>	In the Population- at-risk
Pre-law	September	1985	31	26
	Oct Nov.	1985	68	47
Warning	January	1986		44
Phase	June	1986		45
	October	1986		45
	December	1986*	62	
\$25 Citation Phase	January	1987		78
	June	1987		67
	October	1987		65
	December	1987*	89	
	January	1988		62
	June	1988		65
	December	1988*	88	
	January	1989		60
	June	1989		61
	December	1989*	89	
	January	1990		58

Table 1.1. Percent driver belt use reported in crashes and in the population-at-risk in North Carolina.

Driver Belt Use %

^{*}The data reported for December in 1986-1989 actually cover all reportable crashes in the State for the particular year.

reflect changes in belt use in the post-law period (Chapter 5), results of a survey of automatic seat belt use and misuse in North Carolina (Chapter 6), and an investigation of the double pair method of Evans (1986) for examining seat belt effectiveness (Chapter 7).

CHAPTER 2. HOW ARE RESTRAINED PEOPLE INJURED?

New Jersey - Pennsylvania Comparisons

To answer a question like this, data beyond the normal police-reported KABCO (K=killed, A=major injury, B=moderate injury, C=complaint of pain, O=no injury) coding scheme used by most states are needed. Two states in the system having supplemental injury data are New Jersey and Pennsylvania. Both of these states routinely collect type and location of the most severe injury sustained in a motor vehicle accident. Common codes for injury type include amputation, bleeding, concussion, broken bones, burns, contusions/bruises/abrasions, etc. Location codes include body areas such as head, face, neck, chest, arms, legs, entire body, etc.

Besides having comparable injury codes, another advantage to using these two states is that for the period of analysis, New Jersey had enacted a seat belt use law (SBUL) whereas Pennsylvania had not. New Jersey's SBUL became effective March 1, 1985, while Pennsylvania's SBUL did not become effective until November 23, 1987. The years of data included in the present analysis were 1984-1986 for both New Jersey and Pennsylvania.

Seat belt use in the driving population within each state for the period under consideration is certainly an important variable, but only limited population belt use data are available. One source of belt use data is a report by Campbell, Stewart, and Campbell (1988) that examines the belt law experience in the United States for 1985-1987. Direct observation survey data reported for New Jersey ("overall percent use") are the following:

Date	<u>Belt Use Rate</u>	Comments
February 1985	18%	Pre-law
July 1985	42%	Law and enforcement became effective March 1985
July 1986	35%	
January 1987	35%	
August 1987	41%	

Thus, after the law and enforcement became effective in March of 1985, the belt use rate more than doubled.

Pennsylvania had no statewide observation scheme in place for the period covered by this analysis; a sampling scheme is now being implemented to help in evaluating their belt law. Belt use in accidents was about nine percent in 1984 and 32-33 percent in 1986.

New Jersey and Pennsylvania are proximate and comparable in other respects as well. They are both heavily populated states -- Pennsylvania with a population of 11.8 million, the fourth most populous state, and New Jersey at 7.6 million, the ninth most populous. On a square mile basis, New Jersey is the most densely populated of all states, but Pennsylvania has the eighth highest population residing in metro areas. A few additional comparisons: Pennsylvania has 7.9 million licensed drivers compared to New Jersey's 5.8, and 7.2 million registered vehicles (cars, trucks, and buses) to 4.9 in New Jersey. In both states motor vehicle related deaths per 100,000 population are relatively low -- 15.0 for Pennsylvania (41st highest in the nation) and 13.1 for New Jersey (46th highest) (all data from <u>Statistical Abstracts of the</u> <u>United States, 1987</u>, U.S. Department of Commerce).

In addition to these similarities, there are clear differences between the two states. Most obvious is Pennsylvania's greater land mass and more extensive rural land use. Whereas 93 percent of Pennsylvania's land use is classified as rural, only 75 percent of New Jersey's is so classified. Pennsylvania also has a much more extensive system of rural (non-Federal aid) roadways -- 87,000 miles versus only 11,500 miles for New Jersey.

Some of the analytical focus of Question 2 concerns changes in injury patterns as related to belt use. In this regard, much of what follows disregards the belt use in the crash as reported by the investigating officer primarily because there is a known and sizable bias in this variable with the passage of SBUL's. As we analyzed the data, we examined various distributions containing an indication of belt status, but mainly to be sure that the trends were in the right direction -- that is, that restrained occupants showed a less severe injury pattern -- as was indeed the case.

The analyses also pay particular attention to occupants in vehicles covered by the SBUL as well as to those not covered by the SBUL who serve as comparison groups. Since the New Jersey law pertains to front seat occupants of passenger vehicles, these were designated as "covered," with rear seat

occupants as well as occupants of non-covered vehicles (vehicles other than passenger cars, station wagons, and vans) being designated as "not covered." Similar comparisons were performed with Pennsylvania front-seat occupants (the Pennsylvania data used being pre-law).

To try to ensure more uniformity in regard to type of restraint used, children under five years of age were deleted from the analyses. This should eliminate the vast majority of occupants in child restraint devices.

One final strategy was to attempt to delete older vehicles (say, 1973 and earlier) from consideration, so that lap and shoulder restraint systems would generally be the three-point type. However, it was determined that while New Jersey routinely collects model year information for each accident-involved vehicle, this information is not processed for analysis. Thus, the data could not be subsetted in this manner. For uniformity, the model year filter was not applied to the Pennsylvania data.

Trends Across Time

What follows are comparisons of the New Jersey and Pennsylvania data, concentrating on covered occupant injury patterns for various types of crashes. We first examine injury patterns in all crashes and then follow with examinations of injury patterns for specific crash types (e.g., rollovers, head-on crashes, etc.). It should be noted that different reporting thresholds are in effect for the two states. Both states require crashes to be reported in case of injury. In regard to property damage, New Jersey has a minimum of \$500 to any one party, while Pennsylvania requires property damage of an amount sufficient to prevent the vehicle from being driven away. Thus, one would expect the Pennsylvania criteria to result in a higher average crash severity.

<u>KABCO - Like Results</u>. Figure 2.1 shows KABCO-like results for the covered occupants in the two states for all crashes. New Jersey injury codes are standard -- killed, incapacitated, moderate injury, complaint of pain, and uninjured. The Pennsylvania injury codes substitute the category "minor injury" for "complaint of pain," so that the scale is killed, major injury, moderate injury, minor injury, and no injury. Examining the injury data for the two states, it would appear that the definitions of fatal, major, and moderate injuries are reasonably consistent. Plotting the percentages of fatal injuries, major injuries, and moderate injuries by quarters across several years shows (as expected) little, if any, change in the Pennsylvania data

Figure 2.1. Peant of occupants in all accidents with moderate, major or fatal injuties across time periods (PA and NJ data).

a)

b)

(Figure 2.1a). The moderate injuries show a slight downward trend in New Jersey after the SBUL became effective during the first quarter of 1985, although this trend actually started prior to the law's onset and leveled off during 1986. The percentages of fatal and major injuries in New Jersey appear unchanged across all time periods (Figure 2.1b).

The differences in the magnitudes of the percentage values for the two states (with Pennsylvania being consistently higher) most likely relates to the accident reporting threshold. For further detail, see the Appendix A tables which contain both frequencies and percentages from which the figures in the text were derived.

<u>Injury Type</u>. Figure 2.2 concerns certain common injury types for covered occupants for all crashes. The injury types reported here (and at other places in the text) are ones in which there were sufficient cell sizes to make comparisons, as well as representing injury types where a belt law might be expected to show some effect. Although the percentages of concussions and broken bones are relatively small in Pennsylvania (1-2 percent), the trends across time are basically flat. In New Jersey, both fractures/dislocations and concussions are generally less frequent after the SBUL (although again small in magnitude). The percentage of internal injuries (not available for Pennsylvania) appears, if anything, somewhat higher after passage of the SBUL.

Figure 2.3 shows bleeding injuries and complaint of pain injuries for the covered occupants in all accidents. While the percentages of bleeding occupants are relatively unchanged in both states, the complaint of pain percentages have gradually risen in both states, although in NJ this trend appears to have leveled off.

Body part injuries in all accidents are portrayed in Figure 2.4. For Pennsylvania, all plots are relatively flat. In New Jersey, the percentage of head injuries to covered occupants appears to have decreased since the SBUL, while the percentage of neck injuries appears to have increased. Injuries to the face also appear to have decreased slightly.

<u>Injury Percentage Reductions</u>. The plots across time in Figures 2.1-2.4 generally did not provide a clear indication of injury changes. To examine the changes in further detail, specific comparisons were made for both states across comparable time periods, namely April - December 1984 (pre-law for New Jersey) versus April - December 1985 (post-law for New Jersey). To attempt to

Figure 2.2. Percent of occupants in all accidents with certain injury types across time periods (PA and NJ data).

NEW JERSEY - COVERED OCCUPANTS ALL ACCIDENTS

Figure 2.3. Percent of occupants in all accidents with bleeding or complaint of pain injuries across time periods (PA and NJ data).

b)

NEW JERSEY - COVERED OCCUPANTS ALL ACCIDENTS

Figure 2.4. Percent of occupants in vehicle accidents with certain injury locations across time periods (PA and NJ data).

a)

b)

quantify the respective changes, one can compare the respective percentage reductions, namely, for New Jersey

$$\frac{(7 \text{ A+K pre}) - (7 \text{ A+K post})}{7 \text{ A+K pre}} \times 100$$

$$= \frac{1.58 - 1.48}{1.58} \times 100$$

$$= 6.37$$

and similarly for Pennsylvania, a 2.3 percent reduction where no belt law was in effect (see Table 2.1).

To examine shifts in nature of injury (Figures 2.2 and 2.3 along with Tables A.2 and A.3) as well as body region of injury (Figure 2.4 and Tables A.4 and A.5), one can again look at percentage reductions across time periods between the two states. Table 2.1 presents the results for those injury types and/or body regions with reasonable sample sizes.

Table 2.1. Percentage reduction for injury level, nature of injury, and body region when comparing April - December 1984 versus April - December 1985 for New Jersey and Pennsylvania.

Percentage Reduction

	NJ	PA
Criterion	<u>(Belt Law 3/85)</u>	(No Belt Law)
To forme I and I a		
injury Level:	6 3	2 2
	0.3	2.3
Any Injury	1.1	1.2
Nature of Injury:		
Bleeding	9.7	1.7
Concussion	16.7	9.1
Fracture/Broken		
Bones	8.3	1.9
Complaint of Pain	-5.8	-4.7
Body Region:		
Head	11.0	2.8
Face	6.2	5.6
Neck	-13.2	-5.3
Chest/Abdomen	-22.9	1.6
Arms	-3.7	5.2
Legs	1.5	-1.3

As one might hypothesize, the percentage reduction in bleeding, concussion and/or fracture/broken bones is in the right direction and greater in the belt law state of New Jersey. It is also reasonable that the complaint of pain "reduction" is actually an increase (note the use of the negative sign), since belt effectiveness would likely result in some minor and moderate injuries shifting into the complaint of pain category.

With respect to body region, the New Jersey percentage reductions are greatest for the head and face and, in the opposite direction (i.e., increases), for neck and chest/abdomen. There is a mixed message for the extremities. Other than for the extremities, these overall results (New Jersey and Pennsylvania) are reasonably consistent with the literature with respect to relative changes in location of injury resulting from increasing belt usage.

<u>A Comparison of Rollover and Non-Rollover Accidents</u>. Figures 2.5-2.11 pertain to comparisons of covered occupants in rollover and non-rollover crashes. Figure 2.5 shows the percentages of A+K (serious and fatal) as well as bleeding injuries in rollover crashes. The Pennsylvania data are remarkably similar, although more variable, and likewise seem to follow a seasonal trend across the three years. The A+K plot for New Jersey shows a downward trend following the enactment of the seat belt law, but increasing slightly during 1986. The percentage of bleeding accidents shows no clear trends over time. As would be expected from the reporting criteria, the percentages of these more serious A+K accidents are somewhat greater in Pennsylvania.

Figure 2.6 is a companion plot for Figure 2.5 and concerns the percentages of A+K and bleeding injuries in non-rollover crashes. While the Pennsylvania plots are again reasonably flat, the percentage of bleeding injuries in non-rollover crashes appears to be declining after the SBUL in New Jersey.

Figure 2.7 portrays the percentage of uninjured covered occupants for both rollover and non-rollover crashes in the two states. In Pennsylvania, the percentage of uninjured occupants in non-rollover crashes remains "constant" at around 82 percent, as compared to a "constant" value of about 73 percent for New Jersey. For the rollover crashes, the percentage of uninjured occupants in Pennsylvania fluctuates between roughly 55 and 70 percent. In New Jersey, the fluctuation is between 40 and 55 percent, with no clear trend.

The final rollover/non-rollover plots pertain to the body part injured (Figures 2.8-2.11). Figures 2.8 and 2.9 show the rollover crash injuries. Except for mild fluctuations within the head injury plot, the Pennsylvania data

Figure 2.5. Percent of occupants in rollover accidents with bleeding or serious (A+K) injuries across time (PA and NJ data).

a)

b)

Percent of Occupants

Figure 2.6. Percent of occupants in non-rollover accidents with bleeding or serious (A+K) injuries across time periods (PA and NJ data).

PENNSYLVANIA - COVERED OCCUPANTS ROLLOVER AND NON-ROLLOVER ACCIDENTS

Figure 2.7. Percent of uninjured occupants in rollover and non-rollover accidents across time periods (PA and NJ data).

a)

b)

18 -Percent of Occupants Head u Face Neck

PENNSYLVANIA - COVERED OCCUPANTS ROLLOVER ACCIDENTS

Figure 2.8. Percent of occupants in rollover accidents with certain injury locations across time periods (PA and NJ data).

b)

Figure 2.9. Percent of occupants in rollover accidents with certain injury locations across time periods (PA and NJ data).

are relatively constant over time. In New Jersey, the trends are far from clear, with only the percentage of occupants with face injuries in rollover crashes appearing to decrease slightly after the SBUL.

Figures 2.10 and 2.11 are the companions to Figures 2.8 and 2.9 and concern non-rollover crashes. Once again, the Pennsylvania data are relatively constant, while the New Jersey head, neck and face plots show slight variability (Figure 2.10). The percentages of New Jersey head and face injuries appear to be decreasing over time, while neck, back and chest/abdomen/pelvis injuries appear to be slightly increasing.

<u>A Comparison of Head-On and Non-Head-On Accidents</u>. The next crash types analyzed were head-ons versus non-head-ons. Head-on is defined as frontal, corner-to-corner damage. The figures follow the same scheme as before and concern only covered occupants. Figure 2.12 shows the percentage of occupants in head-on crashes with A+K and/or bleeding injuries. In Pennsylvania, the A+K plot appears to have a slight upward trend, while the bleeding injury plot appears relatively flat. The same general tendency was present in the New Jersey data, although the data are more variable.

Figure 2.13 is the companion plot for Figure 2.12 and pertains to the nonhead-on crashes. About the only change is a slight downward trend for the bleeding injuries plot for New Jersey.

Figure 2.14 shows the percentage of uninjured occupants for both head-on and non-head-on crashes in the two states. Both the Pennsylvania and New Jersey data look quite constant over time.

The final graphs in this series (Figures 2.15-2.18) concern the body part injured in head-on and non-head-on crashes. For Pennsylvania head-on crashes, the only plot with any apparent slope is that for head injuries, where the trend is slightly upward (Figure 2.15a). Neck injuries may also be increasing but the trend is even less pronounced than for head injuries. The same tendency for neck injuries is present for the New Jersey data (Figure 2.15b), while the head injuries appear relatively constant over time. For New Jersey, chest/abdomen/pelvis injuries are increasing over time (Figure 2.16).

For the non-head-on crashes (Figures 2.17 and 2.18), the Pennsylvania plots are all relatively flat. For New Jersey, the head injuries appear to decline slightly over time, while the neck, back and chest/abdomen/pelvis injuries appear to increase (Figures 2.17b and 2.18b).

PENNSYLVANIA - COVERED OCCUPANTS NON-ROLLOVER ACCIDENTS

Figure 2.10. Percent of occupants in non-rollover accidents with certain injury locations across time periods (PA and NJ data).

Figure 2.11. Percent of occupants in non-rollover accidents with certain injury locations across time periods (PA and NJ data).

PENNSYLVANIA - COVERED OCCUPANTS HEAD-ON ACCIDENTS

NEW JERSEY - COVERED OCCUPANTS HEAD-ON ACCIDENTS

Figure 2.12. Percent of occupants in head-on accidents with bleeding or serious (A+K) injuries across time periods (PA and NJ data).

a)

b)

NEW JERSEY - COVERED OCCUPANTS

Figure 2.13. Percent of occupants in non-head-on accidents with bleeding or serious (A+K) injuries across time periods (PA and NJ data).

a)

b)

Figure 2.14. Percent of uninjured occupants in head-on and non-head-on accidents across time periods (PA and NJ data).

PENNSYLVANIA - COVERED OCCUPANTS

NEW JERSEY - COVERED OCCUPANTS HEAD-ON ACCIDENTS

Figure 2.15. Percent of occupants in head-on accidents with certain injury locations across time periods (PA and NJ data).

2-22

a)

Figure 2.16. Percent of occupants in head-on accidents with certain injury locations across time periods (PA and NJ data).

PENNSYLVANIA - COVERED OCCUPANTS

Figure 2.17. Percent of occupants in non-head-on accidents with certain injury locations across time periods (PA and NJ data).

2-24

a)

Figure 2.18. Percent of occupants in non-head-on accidents with certain injury locations across time periods (PA and NJ data).

2-25

a)

<u>A Comparison of Single-Vehicle and Multi-Vehicle Accidents</u>. The last iteration in this series deals with single-vehicle and multi-vehicle accidents. In Figure 2.19, the Pennsylvania single-vehicle A+K and bleeding injuries appear to cycle across time in a manner similar to that for rollover accidents (Figure 2.5), while the single-vehicle bleeding accidents in New Jersey appear to be declining over time. The same type of pattern holds for the multivehicle crashes (Figure 2.20), except that the Pennsylvania cycling trend has disappeared.

Figure 2.21 concerns the single and multi-vehicle crashes with uninjured occupants. While the Pennsylvania data seem to lack direction, the percentage of uninjured occupants in single vehicle crashes have been increasing after the SBUL in New Jersey.

Single-vehicle body part injuries are covered in Figures 2.22 and 2.23, and the percentage of head injuries appears to decline in New Jersey (Figure 2.22b). Face injuries also appear to decline slightly, while neck injuries show a slight increase. The Pennsylvania plots are all relatively flat.

Finally, Figures 2.24 and 2.25 concern body part injuries for multivehicle crashes. For New Jersey (Figure 2.24b), the plot is very similar to the head-on crashes shown earlier in Figure 2.17, where the head injuries appear to be declining over time and the neck injuries increasing. In addition, it appears from Figure 2.25b that both back and chest/abdomen/pelvis injuries are increasing across time in New Jersey multi-vehicle accidents.

Real or Reporting Changes. Since it is possible that any of the trends observed in either the New Jersey or Pennsylvania data could reflect changes in data collection procedures rather than actual changes in accidents and/or injuries, an attempt was made to contact appropriate personnel in both states to ascertain that this was not the case and that any observed trends were in fact genuine. The New Jersey contact in their highway safety office's seat belt section indicated that their office only looked at changes in numbers of injuries and fatalities as a result of the law, and not changes in injury locations, etc. Nevertheless, he was unaware of any event over the past several years that might have affected this coding. He noted that with passage of the New Jersey belt law there had been an increased emphasis placed on the officers to fill out accident report forms completely, but no changes in how they were to fill out the form. For coding information such as location of

NEW JERSEY - COVERED OCCUPANTS SINGLE VEHICLE ACCIDENTS

Figure 2.19. Percent of occupants in single vehicle accidents with bleeding and serious (A+K) injuries across time periods (PA and NJ data).

Figure 2.20. Percent of occupants in multi-vehicle accidents with bleeding or serious (A+K) injuries across time periods (PA and NJ data).

Figure 2.21. Percent of uninjured occupants in single and multi-vehicle accidents across time periods (PA and NJ data).

PENNSYLVANIA - COVERED OCCUPANTS

NEW JERSEY - COVERED OCCUPANTS SINGLE VEHICLE ACCIDENTS

Figure 2.22. Percent of occupants in single vehicle accidents with certain injury locations across time periods (PA and NJ data).

a)

Figure 2.23. Percent of occupants in single vehicle accidents with certain injury locations across time periods (PA and NJ data).

Figure 2.24. Percent of occupants in multi-vehicle accidents with certain injury locations across time periods (PA and NJ data).

Figure 2.25. Percent of occupants in multi-vehicle accidents with certain injury locations across time periods (PA and NJ data).

b)

injury, officers were continuing to rely primarily on whatever claims were made by the victim.

Similarly, for Pennsylvania (where no seat belt law was in place during the time period of this analysis), our contact in the Information inagement Division of the State DOT indicated that there had been no change: in accident reporting procedures, and that no training or other intervention that might affect coding of injuries had taken place (at least not on a large scale). Like the New Jersey contact, he indicated a general increased awareness of seat belt issues by the police and highway patrol, but did not feel that these would have impacted on the injury coding. (The same would also be true for North Carolina.) From these contacts, it does appear that any observed trends in our New Jersey and Pennsylvania data should reflect real changes in accidents/injuries, rather than changes in reporting or coding procedures in these states.

Restrained Occupant Injury Trends Using Indiana Data

Similar to New Jersey and Pennsylvania, the Indiana accident report form contains supplemental injury codes pertaining to injury type and body location. A major difference, however, is that uninjured occupants are excluded from the accident report form. Thus, the analyses that follow necessarily pertain to drivers only.

The Indiana belt law became effective in July 1987. Our analysis period begins with the start of the 1985 calendar year and ends with the third quarter of 1988. Thus, five quarters of injury data are available following the onset of the law.

Statewide seat belt use data for the driving population are available from on-road surveys conducted by Indiana University and Purdue University, as shown below:

	Belt Use	
Date	Rate	Comments
Mar. 1005	207	
May 1985	20%	Pre-law
June 1987	28%	Pre-law
August 1987	51%	Immediate post-law
October 1987	46%	Post-law
April 1988	43%	Post-law
July 1988	46%	Post-law
October 1988	44%	Post-law
April 1989	44%	Post-law

Thus, the belt use rate almost doubled after enforcement of the law became effective, with a small decline thereafter.

The analyses for Indiana are similar to those performed with the New Jersey and Pennsylvania data. In other words, the belt use in the crash as reported by the investigating officer is disregarded because of the known bias in this variable with the passage of SBUL's. The analyses pay attention to occupants in vehicles covered and not covered by the law. "Covered" occupants are <u>drivers</u> of passenger vehicles, while "not covered" occupants are the rear seat occupants of passenger vehicles as well as occupants of non-covered vehicles (vehicles other than passenger cars, station wagons, and vans). Finally, children under five years of age were deleted from the analyses to eliminate the vast majority of occupants in child safety seats.

<u>KABCO-Like Results</u>. The reporting threshold for Indiana is \$200, as compared to \$500 for New Jersey and property damage of an amount that makes the vehicle a "towaway" for Pennsylvania. The Indiana accident report form does not use standard KABCO codes, but NHTSA has developed an algorithm that converts their injury classifications to the KABCO scale. Figure 2.26 portrays the KABCO-like results for covered drivers in all accidents. The percent of drivers killed, injured, or not injured across time is virtually unchanged.

<u>Injury Type</u>. Figure 2.27 concerns the injury type for covered drivers. While there appears to be a downward trend (actually starting before the belt law) for injuries like abrasions, contusions, and bruises, the more serious injuries like fractures/dislocations and internal injuries appear relatively unchanged.

Injury distributions are shown in Figure 2.28 for bleeding, serious and fatal (A+K), and complaint of pain injuries. Starting in 1985, the percentages of drivers with bleeding and A+K injuries show slight downward trends (with the bleeding injury trend more pronounced), while the complaint of pain injuries seem to exhibit only seasonal variation.

Figures 2.29 and 2.30 pertain to injured body parts. Both head and face injuries (Figure 2.29) appear to be declining over time, although it is not at all clear whether the decline is associated with the onset of the seat belt law. Neck injuries appear to be slightly increasing. The trends for the head and neck injuries are similar to the results in New Jersey. Chest/abdomen/ pelvis injuries (Figure 2.30) appear to have increased since the onset of the

Figure 2.26. Percent of Indiana drivers in all accidents killed, injured, or not injured across time periods.

Figure 2.27. Percent of Indiana drivers in all accidents with certain injury types across time periods.

Figure 2.28. Percent of Indiana drivers in all accidents with complaint of pain, bleeding or serious (A+K) injuries across time periods.

Figure 2.29. Percent of Indiana drivers in all accidents with certain injury locations across time periods.

- Chest/Abdomen/Pelvis
- o Knee/Lower Leg/Foot
- Back
- Elbow/Lower Arm
- Shoulder/Upper Arm

Figure 2.30. Percent of Indiana drivers in all accidents with certain injury locations across time periods.

seat belt law, while knee/lower leg and elbow/lower arm injuries appear to have slightly declined.

<u>A Comparison of Rollover and Non-Rollover Accidents</u>. The remaining portion of this analysis covers several accident types, the first of which are rollovers and non-rollovers. Figure 2.31 pertains to serious (A+K) and bleeding injuries. Here the Indiana data behave much like the Pennsylvania data, in that there is some seasonal variation, although no apparent upward or downward trend. Figure 2.32 is a companion plot that pertains to non-rollover serious (A+K) and bleeding injuries. The non-rollover bleeding injuries seem to be decreasing over time, but the effect appears to be long term and not associated with the onset of the seat belt law.

Figure 2.33 portrays the percent of uninjured drivers in rollover and nonrollover crashes. While the percent uninjured in non-rollover crashes appears relatively constant at around 86 percent, a range in percent from about 40 to 60 is the case for the drivers in rollover crashes, with perhaps only a seasonal trend.

The last set of plots (Figures 2.34-2.37) for this group concern the part of the body injured. In Figure 2.34, neck injuries appear to be slightly increasing over time, while the trends for head and face injuries are unclear. For the non-rollover crashes (Figure 2.35), both the head and face injuries appear to slightly decrease after the seat belt law, while again the opposite is true for the neck injuries. For the other body parts, only the chest/abdomen/pelvis injuries show much of a change over time, and here the trend is slightly upward for the non-rollover crashes (Figure 2.37).

<u>A Comparison of Head-On and Non-Head-On Accidents</u>. The next accident types examined are head-on and non-head-on impacts. Figure 2.38 portrays the serious (A+K) and bleeding injuries for the head-on impacts. Although the trend is not strong, it appears that over time the bleeding injuries are slightly decreasing. This change does not appear to be associated with the onset of the seat belt law, however. The same type of result appears for the non-head-on accidents (Figure 2.39). The percentage of drivers uninjured in both head-on and non-head-on crashes appears unchanged over time (Figure 2.40).

Examining the driver body part injuries shows some change for these crashes. In head-on events, injuries both to the head and face appear to decline over time, while neck injuries again appear to slightly increase (Figure 2.41). However, none of these changes appear directly related to the

Figure 2.31. Percent of Indiana drivers in rollover accidents with bleeding or serious (A+K) injuries across time periods.

.

Figure 2.33. Percent of uninjured Indiana drivers in rollover and non-rollover accidents across time periods.

Figure 2.34. Percent of Indiana drivers in rollover accidents with head, neck, and face injuries across time periods.

Figure 2.35. Percent of Indiana drivers in non-rollover accidents with head, neck, and face injuries across time periods.

Figure 2.36. Percent of Indiana drivers in rollover accidents with certain injury locations across time periods.

Figure 2.37. Percent of Indiana drivers in non-rollover accidents with certain injury locations across time periods.

Figure 2.38. Percent of Indiana drivers in head-on accidents with bleeding and serious (A+K) injuries across time periods.

Figure 2.39. Percent of Indiana drivers in non-head-on accidents with bleeding and serious (A+K) injuries across time periods.

Figure 2.40. Percent of uninjured Indiana drivers in head-on and non-head-on accidents across time periods.

Figure 2.41. Percent of Indiana drivers in head-on accidents with head, face, and neck injuries across time periods.

Figure 2.42. Percent of Indiana drivers in non-head-on accidents with head, face, and neck injuries across time periods.

seat belt law. The same types of changes can be seen in the non-head-on crashes (Figure 2.42). In this plot, however, there does appear to be a shift to fewer head injuries after the belt law becomes effective.

Figures 2.43 and 2.44 show injuries to other parts of the body. The only apparent change involves an increase to chest/abdomen/pelvis injuries, and in both plots the changes appear to occur when the seat belt law becomes effective. The overall trends for injuries by body region resemble those for New Jersey and Pennsylvania.

<u>A Comparison of Single-Vehicle and Multi-Vehicle Accidents</u>. The next crash types examined are single-vehicle and multi-vehicle. For single-vehicle serious (A+K) and bleeding injuries, some seasonal variation is present but no clear cut trend (Figure 2.45). The multi-vehicle crashes show a slight downward trend over time for these same injuries (Figure 2.46), but the trend seems long term and not associated with the seat belt law. The increased severity of the single-vehicle compared to the multi-vehicle crashes is evident in Figure 2.47 (uninjured drivers), but no trend within crash type can be identified.

For the body part injuries, the results are similar to those seen for other Indiana crashes. The trends show decreases in head and face injuries and an increase in neck injuries for both single- (Figure 2.48) and multi-vehicle (Figure 2.49) crashes. The single-vehicle plots show no apparent changes for the other body part injuries (Figure 2.50), but the multi-vehicle plots show a slight increase in chest/abdomen/pelvis injuries over time (Figure 2.51). Once again, none of these changes appears to be associated with the seat belt law.

<u>Summary</u>. For the Indiana data examined, the changes in the percentage of injuries for drivers covered by the seat belt law are relatively similar to those seen for the covered occupants in New Jersey. For all accidents, head and face injuries tend to decline over time, and neck and chest/abdomen/pelvis injuries tend to increase. The same tendency is present for the different crash types examined. However, almost all of the changes appear to be long term and not directly associated with the seat belt law.

A Comparison of Restrained and Unrestrained Occupants

To address the question of how restrained people are injured, we used prelaw 1984 accident data for New Jersey and Pennsylvania in order to minimize the bias in police-reported usage rates found after the introduction of a belt law.

Figure 2.43. Percent of Indiana drivers in head-on accidents with certain injury locations across time periods.

Figure 2.44. Percent of Indiana drivers in non-head-on accidents with certain injury locations across time periods.

Figure 2.45. Percent of Indiana drivers in single-vehicle accidents with bleeding and serious (A+K) injuries across time periods.

Figure 2.46. Percent of Indiana drivers in multi-vehicle accidents with bleeding and serious (A+K) injuries across time periods.

INDIANA - DRIVERS

Figure 2.47. Percent of uninjured Indiana drivers in single- and multi-vehicle accidents across time periods.

Figure 2.48. Percent of Indiana drivers in single-vehicle accidents with head, face, and neck injuries across time periods.

Figure 2.49. Percent of Indiana drivers in multi-vehicle accidents with head, face, and neck injuries across time periods.

Figure 2.50. Percent of Indiana drivers in single-vehicle accidents with certain injury locations across time periods.

Figure 2.51. Percent of Indiana drivers in multi-vehicle accidents with certain injury locations across time periods.

Data from 1984 are the earliest available data for both states in this current report. All occupants in passenger vehicles over the age of five are included and have been categorized according to restraint usage: belted or non-belted. An attempt was made to exclude vehicles whose model year was pre-1974, but due to model year not being available for New Jersey, this could not be done.

Data available to characterize injuries in both New Jersey and Pennsylvania are injury severity, nature of injury, and injury location. These data were compared for belted and non-belted occupants within each of the states for all crashes. Also of interest was how occupants are injured in specific types of crashes. These types include: rollovers, head-ons, single vehicle crashes, and ejection accidents. The statistical significance for selected comparisons is assessed by means of the z-statistic for the difference of two proportions (Fleiss, 1973).

<u>Overall Results</u>. From Figure 2.52, for all accidents in Pennsylvania and New Jersey, occupants who are belted are injured less, and when injured sustain less severe injuries then those occupants who are nonbelted. In New Jersey, the proportions of restrained and unrestrained occupants who are uninjured are 77 percent and 72 percent, respectively, while in Pennsylvania, the corresponding proportions are 90 percent and 82 percent. (Pennsylvania, even with its higher reporting threshold, has a higher proportion of uninjured occupants because complaint of pain injuries are included with the uninjured.) In both states, these differences are significant (p < .001). When seat belts are used, the odds of sustaining a major injury or being killed are about half as much as when seat belts are not being used. For New Jersey, the proportions are 0.9 percent vs. 1.6 percent, belted vs. not belted, and for Pennsylvania 1.4 percent vs. 3.3 percent, respectively.

The most common injury types for all occupants of vehicles involved in accidents are: complaint of pain; bleeding; contusions, bruises and abrasions; fractures and dislocations; and concussions. The difference in the proportion of restrained and unrestrained occupants reporting complaint of pain as the most severe type of injury was minimal in both states (15.8 percent vs. 16.5 percent, respectively, in New Jersey, and 4.2 percent vs. 5.2 percent, respectively, in Pennsylvania); likewise, for the proportion reporting contusions, bruises and abrasions as their most severe type of injury. Concussions, fractures and dislocations, and bleeding injuries were about twice

as likely to happen to non-belted occupants as belted occupants in both New Jersey and Pennsylvania. (See Figures 2.53 and 2.54)

Figure 2.55 shows the distribution of injury locations for all occupants in both New Jersey and Pennsylvania. The percentage of head (H) and face (F) injuries is clearly smaller when belts are used than when belts are not used. In New Jersey, the percentage of neck (N) injuries rises slightly when seat belts are used compared to when belts are not being used, while in Pennsylvania the percentage of neck injuries is slightly smaller when seat belts are used. For both states, again a slightly larger percentage of belted occupants sustained chest/abdomen (C) injuries than non-belted occupants.

<u>Rollover Accidents</u>. Figure 2.56 shows the distribution of the percentage uninjured occupants -- belted and non-belted -- in rollover (R) accidents and all other (O) accidents. A smaller percentage of occupants remain uninjured in rollover accidents than in other accidents, and in both New Jersey and Pennsylvania the percentage of uninjured is consistently higher for restrained occupants than for unrestrained occupants. The percent injured in New Jersey in rollover accidents is 53 percent for unrestrained occupants and 45 percent for restrained occupants. In Pennsylvania, the corresponding percentages of injured occupants in rollover accidents are 40 percent and 23 percent. Both of these differences are significant at the p = .001 level.

Figure 2.56b shows A+K comparisons for rollover (R) and non-rollover (O) accidents. In both states the percentage of A+K is highest for unrestrained occupants in rollover accidents. In Pennsylvania, more so than in New Jersey, there is a reduction in A+K injuries when belts are used. In New Jersey, the percentages of A+K injuries are 6.3 percent and 4.8 percent for unrestrained and restrained occupants, respectively, and in Pennsylvania are 10.3 percent and 4.2 percent, respectively. The difference in the proportion of A+K injuries is significant in Pennsylvania (p < .001), but not in New Jersey (p>.2). In all other accidents, the percentage of A+K injuries is lower than in rollover accidents, and as before restrained occupants incur a smaller percentage of A+K injuries than unrestrained occupants.

Figures 2.57 and 2.58 show the distribution of three of the most common types of injuries in rollover (R) and non-rollover (O)accidents: concussions, contusions, and bleeding. In rollover accidents in both states, there is a reduction in the percentage of these three types of injuries when restraints

Figure 2.53. Percent of belted and unbelted occupants with concussions or fractures/dislocations.

Figure 2.54. Percent of belted and unbelted occupants with bleeding or complaint of pain injuries.

All Passenger Vehicle Occupants - 1984 Face and Head Injuries

Figure 2.55. Percent of belted and unbelted occupants with certain injury locations.

a)

b)

Figure 2.56. Percent of belted and unbelted occupants in rollover or other accidents uninjured, or with major or fatal injuries.

Figure 2.57. Percent of belted and unbelted occupants in rollover or other accidents with concussions or contusions.

Figure 2.58. Percent of belted and unbelted occupants in rollover or other accidents with bleeding injuries.

are used. A similar pattern exists for all other accidents; as expected, the percentages are smaller for non-rollover accidents.

In rollover accidents injuries to the head, face, back and arm are the most common. Figures 2.59 and 2.60 show that there is a reduction in these injuries in rollover crashes when restraints are used in both New Jersey and Pennsylvania. Comparisons between rollover accidents and all other accidents indicate a larger percentage of head, back and arm injuries in rollover accidents.

<u>Head-on Accidents</u>. The next item of interest is the head-on crash. Figure 2.61a presents the distribution of percent uninjured non-restrained and restrained occupants for head-on (H) and all other (O) types of crashes in New Jersey and in Pennsylvania. Similar to previous analyses, a smaller percentage of occupants are uninjured in head-on crashes than other accidents and for unrestrained occupants than restrained occupants (see Figure 2.61a). The respective percentages of injured are 26 percent for unrestrained occupants and 23 percent for restrained occupants in New Jersey, and 27 percent for unrestrained occupants and 16 percent for restrained occupants in Pennsylvania. The differences in the proportions in both states were statistically significant (p < .001). For both states, the A+K graph (see Figure 2.61) follows the same pattern as described for rollover crashes.

The distributions of bleeding and fracture and dislocation injuries are shown in Figure 2.62. The percentage of bleeding injuries is consistently higher for unrestrained people than for restrained occupants, in both states. Bleeding injuries also tend to occur with higher frequency in head-on (H) accidents than in other accidents (O). The same is true for fractures and dislocations (see Figure 2.62).

Figure 2.63 shows the distribution of concussions and contusions in headon (H) and all other (O) accidents. In New Jersey, the percentage of contusions and concussions is consistently higher in head-on crashes than other accidents, and consistently higher among unrestrained occupants than among restrained occupants. The results are similar in Pennsylvania.

Figures 2.64, 2.65 and 2.66 show the percentages of injuries by body part injured. For head-on (H) crashes, the percentage of face and head injuries, as well as back injuries, is smaller for belted occupants than for non-belted occupants, while for chest/abdomen injuries the percentages are higher for belted occupants than non-belted occupants, for both states. The distribution

Figure 2.59. Percent of belted and unbelted occupants in rollovers or other accidents with head or facial injuries.

Figure 2.60. Percent of belted and unbelted occupants in rollover or other accidents with back or arm injuries.

Figure 2.61. Percent of belted and unbelted occupants in head-on and non-head-on accidents uninjured or with major or fatal injuries.

Figure 2.62. Percent of belted and unbelted occupants in head-on or non-head-on accidents with bleeding or fracture/ dislocation injuries.

Figure 2.63. Percent of belted and unbelted occupants in head-on or non-head-on accidents with concussions or contusions.

Figure 2.64. Percent of belted and unbelted occupants in head-on or non-head-on accidents with face and head injuries.

Figure 2.65. Percent of belted and unbelted occupants in head-on or non-head-on accidents with neck and back injuries.

Figure 2.66. Percent of belted and unbelted occupants in head-on or non-head-on accidents with chest and abdominal injuries.

of neck injuries was different in each state. In New Jersey, the percentage of neck injuries was higher among belted occupants than non-belted occupants, while in Pennsylvania the percentage of neck injuries was highest among the non-belted occupants. The results were similar for the non-head-on crashes.

Single Vehicle vs Multiple Vehicle Accidents. Figures 2.67 to 2.72 present percentages of selected injuries for single vehicle (S) and multiple vehicle (M) accidents. Non-belted occupants of single vehicle crashes incurred the largest percentage of all injuries (NJ: 36 percent; PA: 28 percent) and the largest percentage of A+K injuries (NJ: 4 percent; PA: 6 percent). Belted occupants were injured less frequently than non-belted occupants in both states and in both types of crashes. The percentage of belted occupants injured in single vehicle crashes (S) are 24 percent and 12 percent, in New Jersey and Pennsylvania, respectively. In multiple vehicle accidents (M), 27 percent and 15 percent of non-belted occupants, and 23 percent and 10 percent of belted occupants, in New Jersey and Pennsylvania, respectively, were injured. The differences in percentages are significant for both the uninjured and the A+K injuries (p < .005).

In single vehicle crashes, bleeding, contusions, concussions, and fractures and dislocations occurred for a larger percentage of occupants who were non-belted than for belted occupants. Figures 2.68 to 2.70 show that a similar pattern also exists for multiple vehicle accidents.

Figures 2.71 and 2.72 show the distribution of injuries by body part. For both states, in single vehicle accidents, face, head and back injuries were incurred more often among non-belted occupants than among belted occupants. In Pennsylvania, a larger percentage of non-belted occupants incurred neck injuries than belted occupants, while in New Jersey the relationship was reversed. For New Jersey multi-vehicle accidents, there was a slight increase in the percent of back injuries for belted versus non-belted occupants.

Ejection Accidents. Figure 2.73 and Table A.31 present the percent of ejected (E) and non-ejected (NE) occupants who were uninjured and the percent of ejected (E) and non-ejected (NE) occupants who were killed or incurred a severe injury. Because the number of ejected occupants who were coded as restrained is larger than we would have expected, we are hesitant to make injury comparisons based on the restrained versus unrestrained variable. An examination of the unrestrained occupants shows that those who are ejected are more likely to incur severe injuries. In New Jersey, the percentage of

Figure 2.67. Percent of belted and unbelted occupants in single or multiple vehicle accidents uninjured or with major or fatal injuries.

Figure 2.68. Percent of belted and unbelted occupants in single or multiple vehicle accidents with fractures/ dislocations.

Figure 2.69. Percent of belted and unbelted occupants in single or multiple vehicle accidents with concussions or contusions.

Figure 2.70. Percent of belted and unbelted occupants in single or multiple vehicle accidents with bleeding injuries.

Figure 2.71. Percent of belted and unbelted occupants in single or multiple vehicle accidents with injuries to the face and head.

Figure 2.72. Percent of belted and unbelted occupants in single or multiple vehicle accidents with injuries to the neck and back.

Figure 2.73. Percent of belted and unbelted occupants, ejected or not ejected, uninjured or with major or fatal injuries.

unrestrained occupants who were severely injured or killed in ejection (E) accidents was 27 percent, compared to 52 percent for Pennsylvania.

<u>Comparison of Males and Females</u>. A comparison of injuries between restrained and unrestrained males (M) and females (F) in accidents in 1984 in New Jersey and Pennsylvania is also of interest. Figure 2.74a shows the percentage of all male and female occupants of vehicles who were uninjured. A smaller percentage of restrained (NJ: 19 percent; PA: 8 percent) and unrestrained (NJ: 23 percent; PA 16 percent) males were injured than restrained (NJ: 29 percent; PA 13 percent) and unrestrained (NJ: 35 percent; PA 23 percent) females. The differences between the males and females were all significant at p < .01. Overall from Figure 2.74b, a slightly smaller percentage of male occupants were killed or sustained a major injury than female occupants. The difference was not significant (p=.69). The results are similar in both New Jersey and Pennsylvania.

Contusions, concussions, and fractures and dislocations occurred for a larger percentage of restrained and unrestrained female occupants than for male occupants. Figures 2.75 and 2.76 show these results.

Figures 2.77, 2.78, and 2.79 show the distribution of injuries by body part. For both New Jersey and Pennsylvania, female occupants -- restrained and unrestrained -- sustained a larger percentage of head, face, neck, back and abdominal injuries than male occupants.

Figure 2.74. Percent of male and female occupants in all accidents uninjured and with major or fatal injuries.

State

PA

NJ

0

All Passenger Vehicle Occupants - 1984 Male vs. Female Fractures and Dislocations

Figure 2.76. Percent of male and female, belted and unbelted occupants with bleeding injuries and fractures and dislocations.

Figure 2.77. Percent of male and female, belted and unbelted occupants with injuries to the face and head.

Figure 2.78. Percent of male and female, belted and unbelted occupants with injuries to the neck and back.

Figure 2.79. Percent of male and female, belted and unbelted occupants with chest and abdominal injuries.

Background

Currently 34 states and the District of Columbia have statewide seat belt use laws. The goal of each of these laws is primarily to increase the proportion of the driving population that is restrained in motor vehicles with the expectation of considerable reduction in morbidity and mortality from the inevitable highway crashes. This analysis question deals with the usage of restraints by accident-involved occupants but by necessity must also look at usage by the population-at-risk primarily as a comparison or normative group.

With respect to population-at-risk belt usage, Campbell, Stewart, and Campbell ("1985-1986 Experience with Belt Laws in the United States," 1987) present restraint usage results for 26 states plus the District of Columbia which currently have seat belt laws. They provide pre-law or baseline belt usage rates as well as the highest belt usage seen in the state and the most recent belt usage figures. Although the results are not as favorable as seen in many foreign countries such as Australia, England, Sweden and West Germany, it is nevertheless clear that the legislation has brought about a considerable increase in belt usage. Generally, pre-law belt usage ranged from around 10 percent to 25 percent among the states; highest belt use seen ranged from slightly over 20 percent to 77 percent in one state, while the most recent usage generally fell in the 35 to 60 percent range. Thus, it is clear that the collective legislation has resulted in increased belt usage by the population, which should translate into increased usage among accident-involved occupants.

Assessing the effect of belt use changes in the accident data is not as straightforward now that it is "the law" to wear seat belts. The direct approach would be to look at belt use as indicated on the accident report form for various subpopulations of interest for those persons covered by the law in a given state versus non-covered occupants as well as non-occupants (pedestrians, bicyclists, etc.) serving as control groups. As will be seen, there are considerable problems with this direct approach in the post-law era due to an increasing phenomenon referred to here as the "lie factor." Accident victims are now telling the investigating officer that they are wearing their belts in unbelievably high numbers. Unfortunately, the police officer often relies only on the response given by the accident victim, rather than looking for additional evidence.

This effort represents an attempt to look at various subgroups of accident data to see if the observed overall "lie factor" is as troublesome in certain of these subgroups; that is, to see if certain subsets of the data are less biased with respect to belt use in crashes in the post-law period. To do this, accident and population-at-risk data for North Carolina were utilized for three periods, namely the baseline (January 1, 1985 - June 30, 1985), warning ticket (January 1, 1986 - June 30, 1986), and the \$25 citation phases (January 1, 1987 - June 30, 1987). All reportable crashes were examined and vehicle model year was limited to 1968 and later to guarantee availability of belts.

To examine the extent and nature of the "lie factor," population-at-risk data for various subgroups of the population are most useful. Relationships between observational data and accident data in pre-law eras have been studied extensively. One would expect many of these relationships seen previously to obtain if the belt use data in accidents is to be believed in the post-law era.

Accident Versus Population-at-Risk Belt Usage

With respect to the observational studies, seat belt usage in North Carolina has been sampled bi-monthly starting just prior to enactment of the law, with three major waves covering 72 sites and three mini-waves covering a subsample of 12 of the original sites surveyed annually. At the outset, a sampling plan was drawn up by which 72 locations were selected as long term sampling sites for North Carolina. Sites included one-third in the eastern or coastal part of the state, one-third in the central or piedmont section, and one-third in the western or mountainous portion. The twenty-four sites within each of the three areas were divided between rural and urban settings, and the specific sites within each area selected in order to cover the full variety of highways ranging from interstate to city streets to secondary roads and rural intersections, etc.

Data collected included time of day, day of week, and location as well as vehicle type and belt usage by race and sex of all front seat occupants of vehicles covered by the law. Each major wave of observations yielded information on over 20,000 drivers, while each of the mini-waves averaged around 4,000 vehicles. The overall belt usage for each sample is weighted according to traffic volume in order that the aggregate is representative of belt use trends across the state as a whole. Thus, it is felt that the

estimates of belt use in the population-at-risk in North Carolina are representative of usage in the State as a whole.

The study groups of accident-involved vehicles consist of the following: covered (cars, vans, light trucks), non-covered (buses, big trucks), and nonoccupant (pedestrians, bicyclists, motorcyclists). Certain other vehicle groups were excluded from the data such as farm equipment, recreational vehicles, etc. Using these vehicle groups, the study or analysis groups were defined as follows: covered occupants (front seat occupants of covered vehicles), non-covered occupants (rear seat occupants of covered vehicles and any occupants of non-covered vehicles), and non-occupants.

Examination of the post-law North Carolina accident data shows the obvious bias in the data when contrasted with the population-at-risk data. Over the years, belt usage in crashes has always been slightly <u>lower</u> than that seen in the population observed at the same period of time under similar circumstances (e.g., road type, time of day, sex, age, etc). Now that the various states, including North Carolina, have seat belt laws, that relationship has reversed dramatically.

Figure 3.1 shows the <u>overall</u> belt usage rates in crashes for North Carolina for each of the three study periods -- pre-law or baseline, warning, and citation phase. The population-at-risk versus accident wearing rates are 24.1 versus 21.3 percent in the pre-law period, 43.1 versus 60.4 percent in the warning ticket phase and 70.7 versus 90.0 percent in the citation phase, respectively! Clearly, as mentioned previously, accident victims are telling the investigating officer that they are now wearing their belts in unbelievably high numbers.

Also plotted in Figure 3.1 are the corresponding results for the Highway Patrol, whose accident investigating and reporting should be at the highest level of quality among police agencies in North Carolina. Although the Highway Patrol belt usage percentages in crashes are consistently lower than those for all reporting agencies (19.9 vs 21.3, 54.7 vs 60.4, and 87.5 vs 90.0 percent, respectively), they are still considerably higher in the warning ticket and \$25 citation phases than the belt usage rates seen in the corresponding rural areas of North Carolina.

Belt usage is also available by race and by sex for the population-at-risk as well as for crash-involved occupants. Historically, lower usage rates have been found among both blacks and among males (Campbell, 1969; Campbell, et al.,

Figure 3.1. Accident vs. population-at-risk belt usage for covered occupants across time periods (NC).

Figure 3.2. Accident vs. population-at-risk belt usage by race of covered occupants across time periods (NC).

1984; and Reinfurt, et al., 1988). As can be seen in Figure 3.2, belt usage is higher for both whites and blacks in crashes than in the general driving population in the warning phase, and in the \$25 citation phase. It is of interest to note the closing of the rather wide gap in belt usage differences between races from the baseline period to the citation phase, with a slightly higher usage rate in the black population rate in the most recent observational and crash data.

It should be noted in all of these comparisons that the accident-involved people are <u>covered</u> occupants (i.e., front seat occupants of covered vehicles), while the observational data represents corresponding covered occupants, namely, those front seat occupants of covered vehicles seen in the roadside surveys.

Figure 3.3 depicts the results by occupant sex for Highway Patrol investigated crashes versus the observational data by time period. In both the accident and observational data across each time period (with the lone exception of baseline crashes), belt usage among females exceeds that for males, which is consistent with previous experience. However, the wearing rates in accidents again show a dramatic reversal as one moves from the baseline period into the warning and then the citation phase, reaching a high of 90.1 and 85.8 percent in crashes for female and male occupants, respectively, versus 74.2 percent and 64.5 percent for female and male passengers in the roadside surveys.

In summary, as can be seen in Figure 3.1, the accident percentages exceed the observational percentages by a large margin, during both the warning ticket phase and the \$25 citation phase, for not only all crashes but also the presumably better data provided by the Highway Patrol. This is likewise apparent in Figures 3.2 and 3.3 examining differences by race and sex, respectively.

In fact, the rate of growth in the percentage for accident-involved belted occupants is in the counter-intuitive direction. Due to proven belt effectiveness, as a larger percentage of the population is wearing belts, the rate seen in crashes for belted occupants should grow but not at the accelerated rate seen in each of the figures. In fact, due to this effectiveness, it should not grow as fast as the observed wearing rates.

The rising belt use across time periods within injury categories is depicted in Figure 3.4 for Highway Patrol-investigated crashes. The crash data

Figure 3.3. Accident vs population-at-risk belt usage by sex of covered occupant across time periods (NC).

Figure 3.4. Accident belt usage by injury severity of covered occupant compared with population-at-risk usage across time periods (NC).

are consistent within time periods with respect to belt usage by level of injury, namely, lowest usage rate for the fatally injured and highest for the all injury category with moderate and severe injuries intermediate.

Also plotted are the population-at-risk belt usage rates for each of the three time periods. Note the increase in wearing rates (24.1 percent, 43.1 percent and 70.7 percent for the pre-law, warning and \$25 citation periods, respectively) in the general driving population. However, the rates of increase in belt usage at <u>each</u> level of injury (as shown by their respective slopes) are consistently nearly as great as the population-at-risk and for the most part greater. This is contrary to what one would expect with reliable crash data due to the proven effectiveness of belts in <u>reducing</u> injuries and fatalities. Thus, for example, if the population belt usage among the fatally injured should not have increased by much more than about one and a half times (given that belts are 40-50 percent effective in reducing fatalities). This is clearly not the case here.

The bottom line with respect to the "lie factor" is that it is increasingly apparent in the citation phase compared to the warning phase. It cuts across both sex and race groups. It is prevalent not only for all crashes but also for the Highway Patrol investigated crashes, and it cuts across all levels of injury. For those populations and particular subgroups for which we also have the observational data, there are no special subsets where the "lie factor" appears to be unimportant. The analysis implication is that, unless there are mathematical adjustments that can be made with the data, the seat belt information provided by police officers in the presence of a seat belt law appears to be quite unreliable and thus not nearly as useful as in the past.

One final subpopulation of interest is for those fatally injured in crashes. It is generally held that the police crash data for fatal crashes is more reliable than for any other level. Table 3.1 gives the population-atrisk usage rates for each of the time periods as well as the wearing rates for fatally injured covered occupants. (Sample sizes precluded looking at the fatally injured non-covered occupants.) Presented in Table 3.1 are the overall comparisons as well as comparisons within urban and rural groups and by race and by sex for fatally injured occupants. Note the rise in wearing rates for fatally-injured covered occupants in crashes as opposed to the population-atrisk wearing rates. Whereas the population estimates do not even double as one
moves from one period to the next, the wearing rates for fatally injured occupants more than double, as one moves from pre-law to warning phase to citation period. This is exactly the reverse of what should be expected due to the known effectiveness of seat belts.

It has been suggested that, as belt usage becomes more widespread, belts would be used more and more by the risk takers and hence the "true" proportion of belted crash-involved occupants would increase at the rate seen in Table 3.1. This would necessarily be true at usage rates above 90 percent but not at the level seen during the citation phase (70.7% overall). Males -- generally a high risk group -- did indeed increase their belt usage by 76 percent from the warning ticket phase to the citation phase. However, they apparently raised

Table 3.1. Belt use (%) for the population-at-risk vs. <u>fatally</u> injured covered occupants by time period.

		Time Period			Percentage	Percentage Point Change		
		Baseline	Warning	\$25 Citation	Warning vs Baseline	\$25 Citation vs Warning		
Overall*	Pop-at-Risk	24.1	43.1	70.7	19.0	27.6		
	Accident Group	5.5	14.2	38.9	8.7	24.7		
Urban	Pop-at-Risk	27.0	44.8	72.6	17.8	27.8		
	Accident Group	9.8	13.6	50.9	3.8	37.3		
Rural	Pop-at-Risk	21.2	38.3	65.6	17.1	27.3		
	Accident Group	4.8	14.3	37.1	9.5	22.8		
White	Pop-at-Risk	25.2	42.5	68.5	27.3	26.9		
	Accident Group	5.4	14.2	38.4	8.8	24.2		
Black	Pop-at-Risk	14.4	32.2	70.5	17.8	38.3		
	Accident Group	6.2	14.1	40.0	7.9	25.9		
Male	Pop -at-Risk	22.3	36.7	64.5	14.4	27.8		
	Accident Group	4.7	9.8	31.9	5.1	22.1		
Female	Pop-at-Risk	25.9	46.9	74.2	21.0	27.3		
	Accident Group	7.1	23.8	53.1	16.7	29.3		

*Overall rates are weighted by ADT (Average Daily Traffic)

their usage in fatal accidents by 225 percent, which is inconsistent with the proven life-saving benefits of belts.

On the other side, it would appear that there is less of a "lie factor" in the fatal data than in the data for any injury or for moderate or worse (BAK) injuries (see Figure 3.4). As should be the case with population wearing rates no greater than 70 percent, the wearing rates for fatally injured occupants should be lower than in the population-at-risk. This is the case for <u>all</u> three time periods for both fatally (K) injured and seriously or fatally (A+K) injured occupants but not so for the other injury severities.

Finally, looking at the percentage point changes across time periods (see Table 3.1), these are generally most expectable for the population-at-risk and for the fatally injured occupants <u>except</u> for the urban strata and for females. Here the increases are inordinately great (comparing the citation phase with the warning ticket phase) yielding unlikely wearing rates of over 50 percent for crash-involved occupants in both strata!

In short, although the best usage data look better in the fatal data than in either the all injury data or the Highway Patrol data, there remain unexplainable discrepancies in police-reported belt usage data which render it much less useful than in the days prior to belt usage legislation.

Adjustment Procedures

Two analytical adjustment procedures were utilized to further examine the evident "lie factor" now present in accident-reported seat belt use. The first procedure assumed that the ratio of observed to accident belt usage was the same in the warning ticket phase as in the baseline phase and likewise the citation phase. Thus, in the following relationship

observed use
baselineobserved use
warningaccident use
baselineX

where X = wearing rate in the warning phase accidents,

one solves for X which is the predicted accident wearing rate in the warning ticket phase. A similar expression would yield the corresponding predicted accident wearing rates in the citation phase.

Table 3.2 gives the results for the adjustment by phase for overall as well as within race and sex groups. Presented are the reported usage rates in

	Warning			Citation		
	Accident Report	Predicted	Pop-at Risk	Accident Report	Predicted	Pop-at Risk
Overall	54.7	38.1	43.1	87.5	62.5	70.7
White	54.3	34.1	42.5	86.9	54.9	68.5
Black	56.1	40.7	32.2	90.3	89.1	70.5
Male	52.6	32.4	36.7	85.8	57.0	64.5
Female	57.8	36.6	46.9	90.1	57.9	74.2

Table 3.2. Predicted vs. reported accident restraint usage rate by time period -- overall and within race and sex groups.

accidents, the predicted rates, and the usage rates seen in the population-atrisk. Except for the black subpopulation, the predicted rates are most reasonable. The cause for the unreasonable predicted rates in this subpopulation is that the observed baseline usage was lower than the corresponding accident baseline usage for the black population. Whatever the causes for this reversal, it does make this adjustment procedure less than ideal.

The second analytical procedure employed to further examine the extent of the apparent "lie factor" assumes that injury rates for restrained and for unrestrained occupants remain constant as the population of restraint users increases (and perhaps changes in other respects). It also assumes that the restraint usage data for the pre-law period are reliable. Given these assumptions, the <u>observed</u> injury by restraint usage distribution in the postlaw period is then compared with the <u>predicted</u> distribution where the latter is derived from belt effectiveness estimates from the pre-law period.

The procedure is illustrated using actual Highway Patrol-reported crash data from North Carolina during the pre-law period (July-September 1985) and the post-law (or citation) period (July-September, 1987) (see Table 3.3). For simplicity, the observed totals have been proportionally scaled down to table totals of 1000 cases in each period (see Table 3.4).

For the required predicted table (see Table 3.5), the column totals are obtained from the observed post-law injury totals (Table 3.4) which assumes

Pre-Law	Injured	Not Injured	Total
Restrained	1727	5258	6,985
Not Restrained	6831	11,516	18,347
Total	8558	16,774	25,332

Table 3.3. Observed restraint usage by injury severity by time period.

Post-Law	Injured	Not Injured	Total
Restrained	7,233	17,682	24,915
Not Restrained	2,286	2,006	4,292
Total	9,519	19,688	29,207

Table 3.4. (Proportional) observed restraint usage by injury severity by time period.

Pre-Law	Injured	Not Injured	Total	Pr (Injured)
Restrained	68	208	276	0.246
Not Restrained	270	454	724	0.373
Total	338	662	1000	0.338

R_{pre} = restraint usage (Pre-Law) = 27.6% E_{pre} = effectiveness (Pre-Law) = 34.1%

Post-Law	Injured	Not Injured	Total	Pr (Injured)
Restrained	248	605	853	0.291
Not Restrained	78	69	147	0.531
Total	326	674	1000	0.326

 R_{post} = restraint usage (Post-Law) = 85.3% E_{post} = effectiveness (Post-Law) = 45.2%

Table 3.5. Constraints for <u>predicted</u> post-law restraint usage by injury severity distribution.

Post-Law	Injured	Not Injured	Total	Pr (Injured)
Restrained	N*11	N [*] 12	N [*] 1.	0.246
Not Restrained	N [*] 21	N [*] 22	N2.	0.373
Total	326	674	1000	0.326

that police cers have not changed their determination of injury severity over time. Dtain the row totals $(N_i^{\star}.)$, the following relationships are utilized:

- (1) N_1^{\star} . + N_2^{\star} . = 1000
- (2) $\frac{N_{1.}^{*}(0.246) + N_{2.}^{*}(0.373)}{1000} = 0.326$

Solving for N_1^{\star} . and N_2^{\star} . yields

$$N_1^*$$
. = 370
 N_2^* . = 630

Finally, assuming Pr (A+K | restrained) = 0.246, then the predicted value of N_{11}^{\star} is derived from $N_{11}^{\star}/N_1^{\star}$. = $N_{11}^{\star}/370$ = 0.246; thus, N_{11}^{\star} = 91. Hence the <u>predicted</u> post-law injury distribution is given by Table 3.6, which is vastly

Table 3.6.Predicted post-law restraint usageby injury severity.

Post-Law	Injured	Not Injured	Total
Restrained	91	279	370
Not Restrained	235	395	630
Total	326	674	1000

 \hat{R} = predicted restraint usage (Post-Law) = 37.0%

 \hat{E} = predicted effectiveness (Post-Law) = 34.1% = E_{pre}

different from the <u>observed</u> distribution (Table 3.4). Note also the sizable discrepancy in the effectiveness estimates (45.2% observed post-law vs. 34.1% predicted post-law). In addition, the observed restraint usage percent in the post-law period (85.3% from Table 3.4) is clearly inconsistent with both the population-at-risk estimate of belt usage (58.3% for covered front seat occupants during the July-September, 1987 period) and historical data showing <u>lower</u> belt usage in crashes than in the general population. All of these results are clearly consistent with the presence of a "lie factor."

The Question of Unknown Belt Use

The final dimension to the investigation of the usefulness of post-law accident belt usage information deals with the question of unknown belt use. Here the analysis focuses on Highway Patrol-investigated crashes and covered occupants only. It is to be expected that with the stigma of not wearing a belt even though there is a law, the officer might tend to use "unknown" for belt use more in the citation phase than in either the warning or baseline phase.

As can be seen in Figures 3.5 for the overall population of covered occupants as well as Figure 3.6 by race and Figure 3.7 by sex, the rate of unknown belt usage in accidents increases slightly in the warning phase over that of the baseline phase and dramatically once the \$25 citation phase is reached! This is true across all levels of injury as well as within each race and sex group -- again across all levels of injury. The rate of unknown belt usage rises directly as injury severity increases; that is, the rate is lowest for the any injury category and consistently highest in fatal crashes. For the most part, the unknown usage rates are higher for black occupants and for males in crashes.

The relatively high unknown belt usage rates in the citation phase provide further evidence of the lack of usefulness of police-reported belt data in post-law periods. Combining this with the "lie factor" results leads one to conclude that, at present, belt usage from belt law states in the post-law period is extremely tenuous at best and not to be recommended, provided the results in other states are similar to those seen in North Carolina.

Figure 3.5. Percent unknown belt usage by injury severity of covered occupant across time periods (NC Highway Patrol).

Figure 3.6. Percent unknown belt usage by race for covered occupant injury severity across time periods (NC Highway Patrol).

Figure 3.7. Percent unknown belt usage by sex for covered occupant injury severity across time periods (NC Highway Patrol).

Conclusions

Realizing these indequacies in the data, current attempts at looking at mortality and morbidi reduction arising from seat belt laws tend to use time series analyses covering a long period prior to the passage of the law and examine injury fluctuations regardless of reported belt usage categories. This would appear to be the recommended procedure for the foreseeable future.

Another strategy, however, is to examine a variable such as ejection (or ejection rates) which is directly affected by belt use. Increases in belt usage rates in the population should yield decreases in ejections (or ejection rates), without having to examine the belt use category.

In short, the question, "How does a State law affect seat belt use?" can at best only approximately be described from the accident data and more appropriately can be gleaned from the various observational studies that are being carried out in the belt law states. Inferences can be made from changes in injury patterns over time but are especially difficult to quantify. Clearly, the accident belt usage data is flawed and hence does not provide adequate direct answers to the question.

Ohio Injury Data

In the last few years, the technique of time series analysis has been used to analyze the effectiveness of seat belt legislation. For example, in Campbell, Stewart, and Campbell (1988), injury data from five states were examined in this fashion. It was decided to use time series analysis on two states from the NHTSA data base that had not previously been analyzed by Campbell, Stewart, and Campbell, and the States of Ohio and Louisiana were selected.

For these analyses, six different monthly data series relating to occupant injury were prepared. Accident victims were first classified as either "covered occupants" or "not covered others". Covered occupants included drivers and front seat occupants of vehicles covered by the Ohio seat belt legislation, while not covered others included other occupants along with nonoccupants (e.g., pedestrians, motorcyclists). Injuries to these subjects resulting from motor vehicle accidents were then classified by three levels of severity: killed (K), killed or seriously injured (A or K), and moderately injured through killed (A, B, or K). Counts of injured covered and not covered subjects for each of the three severity levels were then accumulated by month over the time interval from January 1982 through December 1987. Finally, these counts were expressed as percentages of all accidents involving covered or not covered subjects. Thus, for May 1984, we have the percent of all accidentinvolved covered occupants who were killed, the percent who were killed or seriously injured, and the percent who were moderately injured or worse; similarly, for not covered others and for all other months.

If Ohio's seat belt law resulted in a substantial increase in seat belt usage, then we might expect to see a sharp reduction in the percentage of covered occupants who were injured at the various severity levels coinciding with the beginning of the law. For the not covered others, one might not expect to see such a shift. Population seat belt use for Ohio as noted in Campbell, et al. (1988) was

D .	Belt Use	
Date	Rate	Comments
Early 1984	15%	Pre-law
Mid 1985	16%	Pre-law
June 1986	38%	Immediate post-law
September 1986	47%	Just after enforcement began July 1986
March 1987	48%	Post-law
June 1987	41%	Post-law
June 1988	34%	Post-law

Thus, the belt use rate tripled after enforcement, compared to pre-law, but then declined thereafter.

Structural time series models of the form used by Harvey and Durbin (1986) in their evaluation of seat belt legislation in Great Britain were used to analyze these data series. The computer routine, Structural Time Series Analysis and Modelling Package (STAMP) developed by ESRC Center in Economic Computing, was used to carry out the analyses. Structural time series models were formulated in terms of stochastic (randomly varying) levels, slope components, and seasonal effects, and a purely random or irregular component. These models can also include regression effects due to exogenous and intervention variables. The basic form of the model is

 $Y_{t} = \mu_{t} + \tau_{t} + \sum_{\substack{j=1}}^{K} \alpha_{j} X_{jt} + \varepsilon_{t} ,$

where Y_t is the series being modelled, μ_t is the trend component, τ_t the seasonal component, X_{jt} represent independent variables including interventions, and ε_t is an error term.

The simplest such model contains only a stochastic level and an irregular component. It has the form $Y_t = \mu_t + \varepsilon_t$, where $\mu_t = \mu_{t-1} + \delta_t$. Both ε_t and δ_t are random terms each having mean zero and variances σ_{ε}^2 and σ_{δ}^2 . Thus, the value of the series Y_t at time t is the level μ_t plus an error term ε_t . The value of the level μ_t is its value at time t-1, μ_{t-1} plus a second error term δ_t . Note that the only fixed parameters in this model are the variances, σ_{ε}^2 and σ_{δ}^2 . Slopes, seasonals, etc. add other terms and variances to the equation.

Each model contained either one or two intervention variables indicating either the beginning of the law (May 1986) or the start of enforcement (July 1986) or both. These intervention variables consisted of a series of zeros

from January 1982 up to the point of intervention, then a series of ones from that point onward. A statistically significant intervention effect, thus, is an indication that the series has undergone an overall shift in level beginning at the point of intervention. The algebraic sign of the estimated effect determines whether the shift is an increase (positive sign) or a decrease (negative sign).

Plots of the six data series are shown in Figures 4.1-4.6. Figure 4.1 shows the percent of the covered occupants with either an A, B, or K injury, while Figure 4.2 shows the percent of the covered occupants with either an A or K injury. Figure 4.3 is a plot of the percent of the covered occupants who were killed. Figures 4.4-4.6 cover the same sequence of injuries for the "not covered others."

These figures show that all of the series seem to contain a certain amount of seasonal variation, though this is more pronounced for the not covered series. The figures also show that there seems to be no major shifts in the level of the series associated with either of the intervention points. For the covered occupant series, models with autoregressive terms at lag 11 fit the data better than models with 12 month seasonal patterns.

For each series, models were fit which adequately accounted for the observed autocorrelational patterns and contained the intervention variables. Results of these analyses are presented in Table 4.1. The values in the first row of each cell of Table 4.1 are t-statistics for the two intervention effects when fit separately (i.e., from two models each containing a single intervention). The values in the second row are from a third model containing

Table 4.1. T-statistics for intervention effects.

	<u>Covered</u> C	occupants	<u>Not Co</u>	vered
		Interve	entions	
Injury Level	<u>May 1986</u>	<u>July 1986</u>	<u>May 1986</u>	<u>July 1986</u>
A, B, K	.37	.66	57	88
	.56 an	nd .78	18 a	nd74
A, K	44	.08	19	30
	68 an	Id59	09 a	nd26
К	33	06	.91	1.33
	72 an	nd .65	.35 a	nd88

Figure 4.1. Percent of covered occupants with moderate or worse injuries (Ohio).

Figure 4.2. Percent of covered occupants seriously injured or killed (Ohio).

Figure 4.3. Percent of covered occupants with fatal injuries (Ohio).

Figure 4.4. Percent of non-covered others with moderate or worse injuries (Ohio).

Figure 4.5. Percent of non-covered others seriously injured (Ohio).

Figure 4.6. Percent of non-covered others with fatal injuries (Ohio).

two intervention variables. All t-statistics should be compared with a tdistribution with 60 degrees of freedom. For covered occupants, we would expect a negative effect (decrease) so that a one-tailed test would normally be used. For not covered others a two-tailed test would be used. None of the tstatistics of Table 4.1 was significant at a significance level of .10.

Thus, we see no evidence from the data of a reduction in motor vehicle related injuries at any severity level as a result of Ohio's seat belt law.

Louisiana Injury Data

Six monthly data series were developed using accident injury data from the state of Louisiana. Three of these series pertained to accident involved motor vehicle occupants who were covered by the state's mandatory seat belt law, which became effective in July 1986. These series consisted of the percent of these occupants who were killed, the percent who were killed or seriously injured, and the percent who were ejected from the vehicle. The other three series were developed similarly for occupants not covered by the law and nonoccupants.

The population belt use for Louisiana as noted in Campbell, et al. (1988) was:

Date	Belt Use <u>Rate</u>	Comments
December 1985	12%	Pre-law
December 1986	35%	After enforcement
		began August 1986
January 1988	36%	Post-law

Thus, while the use rate tripled after enforcement of the law, still only about one-third of the occupants were restrained.

Louisiana does not use the KABCO injury severity scale, but serious injuries were designated to match as closely as possible A-level injuries. Thus, the killed or seriously injured series should be reasonably comparable to A+K series which we typically analyze.

Plots of the six data series are shown in Figures 4.7 through 4.12. Figure 4.7 shows the series for percent of covered occupants killed or seriously injured. The plot shows an abnormally high peak at the very beginning (i.e., Jan. - Feb. 1982) of the series which may reflect an error in either the numerator or denominator of this series. Although these data points

Figure 4.7. Percent of covered occupants seriously injured or killed (Louisiana).

are far removed (in time) from the onset of the seat belt law and should not affect the estimation of intervention parameters, the first two data points of this series were not used in any of the analyses. From March 1983 onward the series in Figure 4.7 shows a steady decrease in the percent killed or seriously injured, and a rather sudden drop late in 1986. Figures 4.8 and 4.9 show roughly similar patterns for the other covered occupant series.

As was done with the Ohio data, structural time series models were fit to each of these data series. These models contained trend and seasonal components, random components, and intervention variables to characterize the effect of the mandatory seat belt law on the subsequent data. In particular, since enforcement of the Louisiana seat belt law started in August 1986, an intervention variable having the value of zero for each month prior to August 1986 and the value one from that point onward was included in the models. When such a model was fit to the data of Figure 4.7, a negative but not significant (p > .10) intervention effect was estimated. If, however, the intervention point was shifted to December 1986, the estimated effect (decrease) was quite significant (p < .025). Thus, it seems that most of the sudden shift in level shown in Figure 4.7 comes some four months after the start of the seat belt law. While we know of no reason for this December 1986 shift, models containing such an intervention variable were also fit to the other data series. Figure 4.13 shows the same data as Figure 4.7, but beginning in March 1982. This figure also shows the estimated trend from a model containing the August 1986 intervention variable.

Table 4.2 gives the results of the intervention analyses for all six series (Figures 4.7-4.12). Table 4.2 shows that a statistically significant

Table 4.2. Intervention analysis results.

	August 1986		Decemb	<u>er 1986</u>
	Effect	P-Value	Effect	<u>P-Value</u>
Percent A+K, covered	11	>.10	27	<.025
Percent K, covered	06	<.025	08	<.005
Percent ejected, covered	11	>.20	03	>.25
Percent A+K, not covered	23	>.25	.50	>.20
Percent K, not covered	06	>.25	07	>.25
Percent ejected, not covered	-1.22	>.10	-1.27	>.10

.

Figure 4.8. Percent of covered occupants with fatal injuries (Louisiana).

Percent K

Figure 4.9. Percent of covered occupants ejected (Louisiana).

Figure 4.10. Percent of non-covered occupants seriously injured or killed (Louisiana).

Figure 4.11. Percent of non-covered occupants with fatal injuries (Louisiana).

Figure 4.12. Percent of non-covered occupants ejected (Louisiana).

Figure 4.13. Observed percent (A+K) and trend component for percent seriously injured or killed for covered occupants.

decrease in the percent of covered occupants killed was estimated for the August 1986 intervention point. Both the percent killed and percent killed or seriously injured series for covered occupants exhibit larger decreases somewhat after the August 1986 start-up of seat belt law enforcement. In fact, when an intervention point of December 1986 is used in the models, both series are found to decrease significantly. No significant intervention effects were found for the not covered series, nor for either ejection series.

CHAPTER 5. EFFECTIVENESS OF A STATE MANDATORY BELT USE LAW IN REDUCING EJECTIONS IN MOTOR VEHICLE CRASHES

Background

Ejection was first identified as a major factor in fatal and serious injury automobile crashes in 1954 (Wolf, 1962). Initially, better designed safety door locks were implemented and only later were lap safety belts introduced. This early study by Wolf indicated that usage of safety belts had the potential to significantly reduce fatalities by at least 35 percent.

A subsequent study by Huelke, Marsh, and Sherman (1972) examined injuries associated with ejection in rollover crashes. They concluded that occupants involved in overturns have a nearly two-fold increase in fatal injuries compared with their counterparts in non-rollover crashes. Their data imply that this is due to higher ejection rates, in that 21 percent of the occupants of rolled vehicles were ejected, contrasted with a 3 percent ejection rate for occupants of non-rolled vehicles. Further, within the rolled vehicles, 49 percent of the ejected occupants were fatally injured, compared to 7 percent of those not ejected.

The National Highway Traffic Safety Administration has examined the ejection issue several times. Hedlund (1979) used National Crash Severity Study data to determine that the fatality rate given ejection in rollover crashes was about twice the fatality rate given ejection in frontal or side impacts. Bondy and Hart (1982) used National Center for Statistics and Analysis data to conclude that ejection increased the chance of death by a factor of 25, but without controlling for crash severity. In a 1986 NHTSA study, Sikora used the double pair method of Evans (1986) to account for crash severity and concluded that ejection increased the risk of death four times for ejected drivers compared to non-ejected drivers and 2 1/2 times for ejected right front passengers compared with non-ejected right front passengers.

One of the more recent studies of the risk of death associated with ejection was conducted by the Insurance Institute of Highway Safety (IIHS) (Esterlitz, 1989). Using paired comparison criteria, Fatal Accident Reporting System (FARS) data from 1982-1986 were used to examine trends in ejections resulting from various crash types (including single or multiple vehicle) and crash modes (including rollover, non-rollover, and other points of impact). The data included both passenger cars and "other vehicles", where the "other vehicle" category was stated to include pickups, vans, tractor-trailers, and so forth. Given an ejection, Esterlitz found that depending on these factors, the risk of death ranged from 1.5 to 8, with single vehicle rollover crashes having the highest increase in risk of death for both drivers and right front passengers. In single-vehicle rollover crashes, ejection increases the risk of death eight times to drivers and seven times for right front passengers.

Method

To evaluate the effectiveness of a state mandatory usage law (MUL) in reducing (the generally serious) ejections, accident data from Maryland were examined for the years 1981-1988. This interval spanned both the pre- and post-law periods, with the inception of the law on July 1, 1986. Thus, 1986 was a "mixed" year with six months of pre-law data and six months of post-law data. If Maryland drivers were similar to those in other states passing belt laws (e.g., North Carolina), it would have been reasonable for some to start wearing their belts (perhaps developing the habit) prior to the law actually becoming effective, or closer to the first part of 1986. Since the overall data for the year (labelled as 1986 in the tables and charts that follow) appeared to behave more like post-law activity, the 1986 year is treated as post-law in the analysis.

Since the federal requirement of front seat lap belt installation was mandated in the early 1960's, practically all cars on the road today are equipped with safety restraints (i.e., lap or lap/shoulder belts). While earlier studies (1970's) had shown that usage of these devices reduces the likelihood of certain injuries, the vast majority (nearly 90%) of drivers and front seat occupants elected not to restrain themselves. Now that 36 states plus the District of Columbia have mandatory use laws (MUL's), there has been a wholesale increase in belt use, with national use estimated at roughly 50 percent in NHTSA's 19-city survey (Bowman and Rounds, 1986). Coupled with MUL's is an increasingly present phenomenon referred to as the "lie factor", in which crash victims are telling the investigating officer that they are wearing their belts at higher rates than what would be predicted based on population observations (Hunter, Reinfurt, and Hirsh, 1988). These "lie factor" occurrences now make the measurement of the effectiveness of these laws more difficult. Therefore, for this analysis the alternative indirect approach of examining ejections was employed, since the rate of ejections should decrease as reported and observed belt usage increases (Figure 5.1).

Figure 5.1. Percentage of reported belted <u>drivers</u> in crashes compared with the percentage of ejected drivers.

Due to the implications of the "lie factor", in order to get a sense of how belt usage in crashes compares with belt usage in the population, observational study results from a series of statewide surveys in Maryland were obtained from the Transportation Studies Center at the University of Maryland (average of 29 sites). Additionally, results of an independent study conducted by the Maryland Association of Women's Highway Safety Leaders were obtained (11 sites). Of the two studies, the Transportation Studies Center approach appeared to provide a more unbiased estimate of statewide belt use. Contrary to what would be expected but consistent with the effect a "lie factor" might have, belt usage rates in injury related crashes from the accident file were higher than the rates of the two observational studies (Figure 5.2). These comparisons are limited to the latter three years of the study period, since observational study data are not available for the earlier years (Tables 5.1a-5.1b).

Table 5.1a. Driver belt usage percentages.

<u>Year</u>	Injury <u>Crashes</u>	Transportation Studies Center	Women's <u>Highway Safety</u>
1986	62	-	52
1987	80	53	66
1988	81	51	73
1989	-	50	80

Table 5.1b. Right front passenger belt usage percentages.

<u>Year</u>	Injury <u>Crashes</u>	Transportation Studies Center	Women's <u>Highway Safety</u>
1986	56	-	53
1987	75	49	66
1988	77	41	74
1989	-	54	72

The analysis files consisted of all vehicles in crashes in which there was either an injured driver or an injured right front passenger. This subset of the overall accident file was selected in order to alleviate problems involved with reporting changes over the years. Beginning in 1985, an investigating

(b) Percentage of belted <u>right front passengers</u> in injury related crashes compared with observational study data.

officer reported to the scene of an accident only in cases where there was an injured occupant. Nonetheless, examination of the total accident files for the years 1981-1988 showed very little variation in ejection rates.

Results

A variety of roadway and driving conditions were examined (i.e., straight and curved roadway sections, and wet weather and "good" dry weather) to determine if serious injury and ejection rates are higher under certain constraints. There was little evidence to show that ejections varied by any of these roadway or driving condition factors. However, since it is known that ejections are more likely to occur in overturns and in crashes involving fixed objects, these variables, as well as wheelbase (which is an indicator of the size of the vehicle) were analyzed.

Injury related crashes had an overall downward trend in ejection rates for drivers and right front passengers (Table 5.2). From 1981-1985 (pre-law), drivers experienced a reduction in ejections of approximately 15 percent. Extending into the post-law period, there was an even greater reduction in ejections for drivers (26% when 1981 is compared to 1988). The experience of

		Drivers*	Right Front Passengers*
	Year	Percent Ejected	Percent Ejected
	1981	1.10	1.30
Pre-	1982	1.02	1.11
Law	1983	0.88	1.07
	1984	0.97	1.17
	1985	0.94	1.16
Post-	1986	0.88	1.00
Law	1987	0.74	1.00
	1988	0.81	1.02

Table 5.2. Ejection percentages of drivers and right front passengers in injury related crashes.

*based on an average of 43,278 drivers/yr and 17,201 right front passengers/yr

right front passengers followed a similar pattern. During the pre-law period, 1981-1985, ejections decreased by 11 percent. After the inception of the MUL, the rate of ejections was reduced even further (22% reduction between 1981 and 1988). Coinciding with the reduction of ejections of these front seat occupants, belt usage as reported on the accident form increased steadily (Table 5.3).

	Drivers*	<u>Right Front Passengers*</u>
<u>Year</u>	Percent <u>Reported Belted</u>	Percent <u>Reported Belted</u>
1981	16	10
1982	17	11
1983	20	14
1984	25	21
1985	33	27
1986	62	56
1987	79	75
1988	81	77
	<u>Year</u> 1981 1982 1983 1984 1985 1986 1987 1988	Drivers* Percent Year Reported Belted 1981 16 1982 17 1983 20 1984 25 1985 33 1986 62 1987 79 1988 81

Table 5.3. Reported belt usage percentages of drivers and right front passengers in injury related crashes.

*based on an average of 40,400 drivers/yr and 16,093 right front passengers/yr

As expected, the ejection rates of drivers and right front passengers involved in overturn crashes is much higher than those involved in non-overturns (Figure 5.3). Based on the average of the pre- and post-law estimates, driver ejection in overturn crashes was reduced by nearly 17 percent with the law in effect. In contrast, the average estimates for right front passengers yielded a three percent decrease. While right front passengers had steady increases in terms of ejections during the pre-law phase, with the inception of the MUL in 1986, there was a substantial reduction of approximately 29 percent (when 1985 is compared to 1986).

Because wheelbase is a factor which influences vehicle overturns, it has an indirect relationship on the rate of ejections. Figure 5.4 shows that regardless of the size of the vehicle, the ejection rates decreased during the sample period. As expected, occupants in small cars (i.e., wheelbase less than

Year

Figure 5.4. (a) Percentage of <u>drivers</u> ejected from cars with wheelbase less than 102 inches vs cars with wheelbase greater than or equal to 102 inches;
(b) Percentage of <u>right front passengers</u> ejected from cars with wheelbase less than 102 inches vs cars with wheelbase greater than or equal to 102 inches.

102 inches) were more likely to be thrown from the vehicle than their counterparts in larger vehicles (i.e., wheelbase greater than or equal to 102 inches).

The final factor believed to affect the likelihood of being ejected is the fixed object crash (Figure 5.5). During the eight-year period, the percentages of both drivers and right front passengers ejected in fixed object crashes showed no clear trend. Examining the no-object crashes, there appeared to be a slight downward trend for both drivers and right front passengers. (Because of a coding change, the no-object data were unavailable for 1988.)

Conclusion

In conclusion, now that seat belt laws are in effect in 34 states (including Maryland) plus the District of Columbia, it has become increasingly difficult to measure the effectiveness of restraints. As reported by Hunter et. al., 1988, information on seat belt usage provided by police officers is unreliable when there is an existing mandatory usage law. Indications of this "lie factor" are evident in Maryland's accident data. During the period from 1981-1988, reported belt usage rates of front seat occupants in crashes increased steadily and exceeded the rates of two independent statewide observational studies.

Assessing ejections yielded indirect evidence that ejections may be decreasing overall in injury related crashes. For the most part, the ejection rates of front seat occupants remained lower in the post-law period from 1986-1988 than in the preceding years. These results indicate that since Maryland imposed a MUL there have been reductions in ejections and thus a decreased likelihood of serious or fatal injuries.

Figure 5.5. (a) Percentage of <u>drivers</u> ejected in fixed object crashes vs crashes in which there was no object struck;
(b) Percentage of <u>right front passengers</u> ejected in fixed object crashes vs crashes with no object struck.

CHAPTER 6. USAGE PATTERNS AND MISUSE RATES OF AUTOMATIC SEAT BELTS BY SYSTEM TYPE¹

Background

Seat belts have now been required in passenger vehicles for over two decades; lap belts were required in 1966 and lap and shoulder belts in 1968. The early lap and shoulder belt systems were not connected (a four-point system), but interconnected lap/shoulder belts (a three-point system) became standard in 1974. Through the early 1980's, however, U.S. seat belt use rates were approximately 10-15 percent, so that the vast majority of motor vehicle occupants were electing not to use their available restraints.

In 1974 an ignition interlock system was required on all new cars, such that they would not start unless the driver lap/shoulder belt was engaged. However, this system was so unpopular that Congress also repealed the interlock rule effective February 1975.

The knowledge about design and implementation of air bags in motor vehicles has been available for several decades, yet movement to require these automatic devices has been quite slow. Many highway safety specialists feel that the protracted arguing between seat belt and air bag advocates over which system should be preferred was a major factor in holding down the seat belt use rate in the U.S. thus maintaining the status quo from around 1975 till 1984. This dichotomy did not exist in Europe and Australia, and many of these countries had high belt use rates in the 1970's and 1980's.

Tennessee became the first state to pass a child passenger safety law in 1977, and many states followed suit over the next few years. By 1985 all 50 states had such a law in place. This activity may have helped to initiate the movement that was to come in regard to adult belt laws.

In 1984, Federal Motor Vehicle Safety Standard (FMVSS) 208 was amended to promulgate the use of automatic protection in motor vehicles. A phase-in was set up such that all cars manufactured during the 1990 model year and later would be required to have some form of automatic protection that would meet federal crash test requirements. The four-year phase-in took place in the following manner: 10% of all 1987 model year cars sold in the U.S. were

¹This chapter is a revision of the paper that was presented at the 34th Annual Meeting of the Association for the Advancement of Automotive Medicine held October 1-3, 1990, in Scottsdale, Arizona.

required to have automatic protection; 25% of 1988 model year cars; 40% of 1989 model year cars; and 100% of all 1990 model year cars.

During the early-to-mid 1980's, the auto manufacturers began promoting the passage of mandatory belt use laws (MUL's), no doubt aided by the prospect of possibly not having to meet the automatic protection phase-in schedule if twothirds of the U.S. population were covered by adequate MUL's. In 1984, New York became the first state to require belt use by drivers and front seat occupants. By the end of 1985, fifteen additional states plus the District of Columbia had passed mandatory use laws. Although there have been repeals of MUL's by four states, as of April 1990 there were belt laws in 33 states plus the District of Columbia that covered more than 85 percent of the U.S. population.

Although much of the U.S. population was covered by belt laws, the federal government on other grounds declined to overturn the amendment to FMVSS 208 that required the automatic protection phase-in. Initially the majority of vehicles with automatic restraints were equipped with automatic seat belts. Now there is an increased production of driver air bags which will eventually also include right front-seat passenger air bag systems. These air bag restraint systems are supplemental systems designed to activate in frontal and frontal oblique collisions only. Therefore, it is important for the threepoint manual seat belts to be used by air bag-equipped automobile drivers.

Relatively little is known about the usage of automatic seat belts by the population-at-risk or the effectiveness of these systems in crashes. The same can be said with respect to the effectiveness of the supplemental air bag systems in reducing deaths and injuries. In 1981, Chi and Reinfurt reported on a study involving some 10,336 Volkswagen Rabbits involved in crashes. The dataset consisted of both manual restraint system Rabbits as well as automatic shoulder belt/knee bolster restraint Rabbits. They concluded that the automatic belt Rabbits experienced between 20 and 30 percent fewer serious and fatal injuries than their counterparts in Rabbits with conventional threepoint belt systems. The overriding factor for this reduction was the increase (at least two-fold) in the belt usage rates in the automatic belt Rabbits. This study concluded that, when used, the two belt systems are equally effective in reducing serious injuries.

More recently, Nash (1989) reports on the effectiveness of automatic belts in reducing fatality rates in Toyota Cressidas. Comparing Toyota Cressidas

equipped with motor-driven automatic belts since 1981 with similar Nissan Maxima's equipped with three-point manual belts and using data from the Fatal Accident Reporting System, he concluded that the fatality reduction effectiveness for the Toyota automatic belts is approximately 40 percent. This is consistent with the existing estimates of the effectiveness of manual restraint systems in fatality reduction (Partyka, 1988).

Automatic seat belts are available in three basic designs. VW produced the first automatic belts in its 1975 Rabbit models. These consisted of twopoint shoulder belts attached to the upper rear of the front door and connected to a take-up reel located between the front seats. Lower body restraint was provided by a knee bolster since no lap belts were provided. These belts were detachable but an ignition interlock was installed to encourage usage.

With the 1981 Cressida, Toyota introduced a second design which is a twopoint motorized automatic belt system. The belt is a motor-driven, nondetachable automatic shoulder harness. Also included are manual lap belts along with a knee bolster.

The third type of automatic belt, used extensively by General Motors and Honda, is a three-point non-motorized belt mounted near the upper and lower rear edge of the front door of the vehicle. There are variations on these basic systems, such as the two-point automatic shoulder belt along with a manual lap belt found in all 1990 VW's.

Again, as the majority of automatic belt systems are detachable and also are not accompanied with ignition interlock systems, relatively little is known about the acceptance of these systems by the motoring public. The usage in crashes reported by Chi and Reinfurt (1981) suggested usage rates for the automatic belts roughly two-fold that of the manual belts -- at least in VW Rabbits. The estimates ranged from 17 to 42 percent for manual belts versus 43 to 74 percent for automatic belts based on crash data from New York, North Carolina, Maryland and Colorado.

With respect to belt usage in the population-at-risk, a study conducted by Williams, Wells, Lund and Teed (1989) showed significantly higher belt usage rates for drivers with automatic restraints compared with manual belts. Additionally, there were differences with regard to lap belt use among the various automatic systems. The data were comprised of 1987 model year vehicles observed in different suburban areas of Washington, D.C., Chicago, Los Angeles, and Philadelphia. The authors concluded that some manufacturers were indeed

more successful than others in providing automatic belt systems that result in high usage rates.

The most extensive study to date was conducted in conjunction with the NHTSA's annual belt survey in 19 cities (Bowman and Rounds, 1989). As an addon to their regular national survey of belt usage across the United States, information was collected during 1987 and 1988 on a total of 21,308 drivers in automatic belt passenger cars. The results from this study provide usage rates by type of automatic belt systems by manufacturer and make/ model. Comparisons are made with manual belt usage and also by model year groups. Results are limited to shoulder belt usage only because the cars observed were not necessarily stopped. In addition, these results are strictly for urban vehicles and do not include information on driver characteristics such as age, race, and sex.

To close some of these gaps in the data, the Highway Safety Research Center collected belt use data in cars equipped with automatic belts, along with air bag and manual belt vehicles (as a baseline). The goal was to provide knowledge about whether some belt systems were more acceptable (i.e., used) than others, and whether drivers with air bags actually use their available belts. Comparisons are made with the U.S. DOT 19-city survey where appropriate.

Method

To obtain data on the use of restraints in cars equipped with automatic restraints (lap/shoulder belts and/or air bags), supplemental data were collected as part of an on-going statewide belt use survey for North Carolina. Data were collected in January-February, 1989, June-July, 1989, and January-March, 1990. Observers were sent to signal- or stop-controlled intersections scattered across the State, both in rural and in urban locations. The requirement for signal- or stop-controlled intersections was to enable the data collectors to correctly ascertain lap belt use -- an essential ingredient of this survey.

Starting with model year 1986, passenger cars have been required to have center, high-mounted rear brake lights. And starting with the 1987 model vehicles, some of the new cars were also required to have automatic restraints -- either air bags or automatic seat belts. Thus, the observers focused on cars with the center, high-mounted brake lights with the exception of VW

Rabbits, which have had a portion of their vehicles equipped with automatic belts since model year 1975. Since only 10 percent of the 1987 model year cars were required to have automatic restraints and 25 percent of the 1988 models, the data collectors were trained to recognize the various makes and models likely to be equipped with automatic restraints by visiting automobile dealer showrooms and studying the available literature. However, the data were not restricted only to air bag or automatic seat belt vehicles, as information was needed for new model vehicles equipped only with manual belts which would serve as baseline data.

The data collectors worked in pairs at these various controlled intersections. One observer recorded age, (under 25, 25-54, 55 and older), race (white, non-white), and sex of the driver; belt type (e.g., motorized automatic shoulder belt vs. manual three-point system); and usage of the lap and of the shoulder belt. In addition, this observer recorded misuse which included the belt being unhooked from the mounting position, excessive slack, or the shoulder belt placed under the arm of the driver.

The second observer, positioned toward the rear of the vehicle, first determined that there was a center, high-mounted brake light present or else that the vehicle was a VW Rabbit and hence an eligible vehicle, recorded the license plate number for cars with North Carolina license plates and provided a description of the car, namely, the make and model as well as body style (e.g., two-door vs. four-door vs. station wagon). The description of the vehicle was necessary to confirm the subsequent match with the North Carolina vehicle registration data since, when there is a vehicle transfer, the license plate stays with the owner. Thus, there is a period of time after this transfer when the old plate is on the new vehicle but the registration file information has not yet been updated. Therefore, to guarantee that the observed license plate corresponds to the vehicle data on the registration file, this additional description of the car was required. Data on belt use for a total of 4820 cars were collected during these three sampling periods.

To determine the type of restraint system installed in the vehicle, it was necessary to obtain the vehicle identification number (VIN). This is available on the North Carolina registration file for all cars registered in the State. Thus, each of the observed license plate numbers was checked against the vehicle registration file. If the description of the vehicle agreed with that on the registration file, then the VIN from the file was recorded for that

vehicle. Otherwise it was necessary to exclude that vehicle from the study. Of the initial 4820 cars observed, some 4225 vehicles (or 87.7%) matched the data on the registration file, and hence had appropriate VIN's.

Using VINDICATOR, the VIN-decoding software package developed by the Insurance Institute for Highway Safety (IIHS), the sample VIN's were decoded to obtain restraint type. The resulting levels of restraint type provided by this program are manual three-point belts, air bags, or automatic seat belts. Some 4151 VIN's were decoded using the VINDICATOR package (i.e., 86.1% of the original sample).

As with the U.S. DOT study, there was particular interest in the types of automatic seat belts -- the motorized two-point belts, the non-motorized shoulder belt only, and the non-motorized three-point (i.e., automatic shoulder/automatic lap combination) belt. In order to provide this level of detail, the make/model and model year information from the VINDICATOR program was used, along with detailed documentation on specific type of automatic belt system provided annually by NHTSA, IIHS, and also Geico Automobile Insurance Company.

Thus, the final study sample consisted of belt usage by system type for 831 drivers with manual three-point belts, 230 with air bags (along with threepoint manual belts), and 3,090 with automatic seat belts. Of these 3,090, there were 413 motorized automatic shoulder/manual lap belts, 148 non-motorized automatic shoulder belts, 2,518 non-motorized automatic shoulder/automatic lap belts, and an additional 11 non-motorized belt with type unknown.

Results

The distribution of the study sample of 4,151 drivers of late model passenger cars is shown in Table 6.1 by restraint type system. The majority (74.4%) of the sampled vehicles had automatic seat belts, 5.5 percent had air bags with manual three-point belts and the remaining 20.1 percent had manual three-point belts without air bags. As there were only 21 cars with a nonmotorized automatic shoulder/manual lap belt system (e.g., 1990 model VW Jetta), they were combined with the more common automatic shoulder belt only system (e.g., VW Rabbit). The column identified as "Shoulder Belted %" represents drivers where the shoulder belt was in use. The next column, labeled "Full System Usage %" indicates that the entire system was being used appropriately. As will be seen, the main instance of misuse was when there was

a manual lap belt that was not buckled. The final column presents the results from the US DOT 19-city survey of driver automatic belt use rates (see Bowman and Rounds, 1988).

Restraint <u>Type</u>	<u>Total</u>	Shoulder Belted	Full System Usage 	19 City Shoulder Belted
Auto Belt	3090	79.6	68.8	88.7
Motorized:				
Auto S/Manual L	413	94.2	28.6	97.2
Non-Motorized:				
Auto S	148*	83.8	75.7	81.3
Auto S/Auto L	2518	76.9	74.9	76.9
Type Unknown	11	90.9	81.8	
Air Bag	230	73.9	73.5	
Manual Belt	831	<u>76.3</u>	<u>73.8</u>	
Overall	4151	78.6	70.0	

Table 6.1. Percent shoulder belted and percent full system usage by restraint type.

*148 = 127 (Auto S) + 21 (Auto S/Manual L)

It should be noted that in both the air bag cars and the manual belt cars, shoulder belt usage percentages correspond to usage of three-point manual belts provided by these vehicles.

For the full sample, there was at least a shoulder belt used in 78.6 percent of the cases. When looking at "Full System Usge," the percentage drops to 70.0 percent. This rather high usage is partly due to the observations focusing on new model cars (basically 1986 and later model years) and also the sampling being carried out in North Carolina where belt usage in the population has been approximately 60 percent for the last several years.

Results of applying Pearson's Chi-square test indicate that there is a significant difference in "shoulder belted" usage rates among drivers of vehicles equipped with automatic belts, manual belts, or air bags (Chi-square = 7.5, df = 2, p = 0.02). Shoulder belt usage is highest for drivers with

automatic belts (79.6%) compared with 76.3 percent for manual belts and 73.9 percent for air bags. Within the automatic belt systems, there is also a significant difference in "shoulder belted" usage rates (Chi-square = 67.7, df = 3, p < .001). The generally non-detachable motorized systems have the highest usage rates, namely 94.2 percent. This was followed by the automatic shoulder belt system with 83.8 percent, and, somewhat lower at 76.9 percent, the three-point automatic shoulder belt combined with the automatic lap belt as is commonly found in General Motors and Honda vehicles.

A special feature of this study was the determination of not only shoulder belt usage but also lap belt use. This is particularly important in cases where the lap belt must be fastened separately, such as in the Toyota Camry and Cressida and the Ford Tempo and Escort. As is seen in Table 6.1, in the case of the non-motorized automatic shoulder/automatic lap belt, generally when the shoulder belt is used, the lap belt is also utilized (76.9% vs 74.9%, respectively). For the non-motorized automatic shoulder belt systems, the drop from 83.8 percent shoulder-belted to 75.7 percent fully restrained is mainly attributable to the 21 vehicles for which the lap belt must be buckled manually (e.g., 1990 model VW Jetta).

For the increasingly popular motorized automatic belts where the shoulder belt is motor-driven and a separate lap belt must be manually attached, there is a 70 percent reduction going from 94.2 percent shoulder belt usage down to 28.6 percent where the lap belt is also manually attached. Often motorists would tell the data collectors that "they just forget to buckle the lap belt" or that "they didn't know that they had a lap belt." For whatever the reason, it is clear that the drivers with the motorized shoulder belts are most often neglecting to use the important manual lap belt. See Figure 6.1 for usage rate comparisons across restraint types.

Comparing the second and final columns of Table 6.1, it is of interest to note that the results from the urban DOT study are relatively similar to those found in North Carolina. Again, highest shoulder belt use rates (97.2% DOT vs 94.2% N.C.) were seen with the motorized automatic belts and lowest for the non-motorized automatic shoulder/ automatic lap belt combination (identical at 76.9%).

Note was made by the observers of obvious misuse of the shoulder belt portion. Categories of misuse included (1) belts that were unhooked from the door mounting, (2) shoulder belts with obvious excessive slack (i.e., being

"too loose" with at least six inches of extra belt webbing) and (3) shoulder belts worn under the arm. The most common form of misuse was the shoulder belt being "too loose." In 3.0 percent of the cases (i.e., 126 drivers), there was obvious excessive slack in the shoulder belt. In an additional 1.5 percent of the cases, the driver was wearing the shoulder belt underneath the arm. And in another 1.3 percent of the cases, the driver had detached the shoulder belt from the door mounting. Thus, overall nearly six percent of the drivers observed in this survey were wearing their shoulder belt incorrectly.

The next two tables deal with belt use by car manufacturer and by make and model within automatic belt type. For the most part results are limited to those subgroups with reasonable sample sizes.

Table 6.2 displays belt usage by restraint type across manufacturer. First, for each manufacturer, the percent- age distribution by restraint type is given. For example, in our survey 21.6 percent of the Chrysler products had automatic belts and 19.8 percent had air bags with the remaining 58.6 percent having only manual belts. Consistent with the previous table, the first three listed automatic belt manufacturers (i.e., Chrysler, Ford and Toyota) have high shoulder belt use rates ranging from 83 percent to 97 percent. However, too often the manual lap belt is not being used resulting in a sizable decline to a "Full System Usage %" ranging from 26 percent to 37 percent.

Although the shoulder belt usage rate for the non-motorized automatic belt is lower than that for the motorized system, these systems are much more likely to be fully used. Here the range in usage of the shoulder belt is from 77 percent to 88 percent with little decline for full system usage, namely 75 percent to 88 percent.

For the air bag cars as well as the manual belt cars, the usage rates of the manual three-point belts are somewhat lower but there is very little difference between the percentage indicated as shoulder belted versus having the entire belt system being used.

Table 6.3 gives a further breakdown for the automatic belt systems for various make/model combinations and compares the results of the North Carolina study with that done by U.S. DOT. Note the similarity in the results between the belted percent in North Carolina and the indicated belted percent for the 19-city survey. Except for the VW Rabbit/Golf and the Honda Prelude, the percentages are most comparable between the two surveys. Part of the reason

Restraint <u>Type</u>	<u>Manufacturer (%)</u> *	<u>Total</u>	Shoulder Belted 	Full System Usage %
Auto Belt				
Motorized	Chrysler (21.6)	35	82.9	37.1
	Ford (61.1)	181	94.5	26.0
	Toyota (93.1)	122	96.7	28.7
Non-	VW (97.0)	98	87.8	87.8
Motorized	GM (91.8)	2337	76.9	74.8
	Honda (72.6)	193	77.7	76.7
Aim Dec				
AIT Dag	Chrysler (19.8)	32	68.8	68.8
	Ford (9.5)	28	78.6	78.6
	Hond a (3.8)	10	50.0	50.0
	Mercedes (80.2)	93	68.8	68.8
	Volvo (21.9)	40	90.0	90.0
Manual Belt				
	Chrysler (58.6)	95	71.6	70.5
	Ford (29.4)	87	72.4	69.0
	Toyota (6.1)**			
	VW (3.0)**			
	GM (8.2)	208	80.3	76.0
	Honda (23.7)	63	77.8	76.2
	Mercedes (19.8)	23	69.6	69.6
	Volvo (78.1)	143	80.4	79.7

Table 6.2. Belt usage by restraint type across manufacturer.

*Restraint type percent within manufacturer.
**Cell size < 10</pre>

Restraint <u>Type</u>	Make	<u>Model</u>	<u>Total</u>	Shoulder Belted 	Full System Usage <u>7</u>	19 City Should. Belted
Motorized:	Ford	Escort Tempo	105 40	93.3 97.5	27.6 27.5	97.7 97.7
	Toyota	Camry Cressida	78 42	98.7 92.9	24.3 35.7	99.3 99.6
Non- Motorized:						
Auto S	VW	Jetta Rabbit/ Golf	47 49	95.7 79.6	95.7 79.6	93.9 96.2
Auto S/ Auto L	Buick	LeSabre Regal Skylark	315 114 98	85.4 73.7 78.6	83.8 71.1 74.5	76.9 81.2 81.0
	Chev.	Beretta Corsica	150 87	67.3 71.3	62.7 70.1	76.9 81.8
	Olds.	Calais Cutlass Delta 88	170 99 254	70.6 77.8 81.5	68.2 74.7 80.3	67.7 81.3 77.0
	Pont.	Bonneville Grand AM Grand Prix	195 446 123	81.0 72.2 74.8	80.5 70.2 67.5	79.4 74.4 84.0
	Honda	Accord Prelude	110 68	72.7 83.8	71.8 83.8	75.3 67.0

Table 6.3. Belt usage by type of automatic belt system for various make/model combinations.

for this difference is that older model Rabbits with lower use rates are included in the North Carolina sample. Again all four motorized shoulder belt make/models show high shoulder belt usage, namely 92.9 percent to 98.7 percent, but with a dramatic decline when accounting for full system usage. In contrast, for the non-motorized systems, when the shoulder belt is used, the lap belt is generally also in use.

The final three tables deal with driver characteristics such as age, sex, and race. With respect to belt usage by type of system, overall frequencies and usage percentages by restraint type are given in the first row of each section of the table to serve as a baseline for comparison.

Belt use by driver age is shown in Table 6.4. As can be seen, the percentage of drivers of cars with automatic seat belts using at least the

Restraint <u>Type</u>	Age	<u>Total</u>	Shoulder Belted 	System Usage <u>%</u>
Auto Belts	Under 25	3090 343	79.6 74.6	68.8 57.4
	25-54	2016	79.9	69.1
	55 and over	731	81.3	73.2
Air Bags		230	73.9	73.5
	Under 25	9	66.7	66.7
	25-54	162	75.3	75.3
	55 and over	59	71.2	69.5
Manual Belts		831	76.3	73.8
	Under 25	55	83.6	78.2
	25-54	562	74.4	72.2
	55 and over	214	79.4	76.6

Table 6.4. Belt use by restraint type by age of driver.

Fn11

shoulder belt (i.e., "Shoulder Belted %") is lowest for the youngest drivers. For air bags and manual belts, the small sample sizes limit drawing conclusions for the younger drivers. Within restraint type, the range of percentage of drivers buckled up among the various age groups is from seven to nine percent for automatic belts and manual belts, respectively. The decline in percentages when accounting for full system usage is generally greater for the younger drivers, dropping to below 60 percent for those younger drivers in automatic belt cars.

Table 6.5 provides results of belt usage by restraint type according to driver sex. The sample is split 44/56 by sex (male/female driver). Shoulder belt usage is higher for female drivers in both the air bag cars with threepoint manual belts and in the manual belt cars -- namely some six to 12 percentage points higher. This is consistent with many surveys dealing with belt usage by driver sex. Similar comments apply to the "Full System Usage" percentages by driver sex. For the automatic belt category, both the percentage of drivers using at least shoulder belt as well as the percentage of

Table 6.5. Belt use by restraint type by sex of driver.

Restraint <u>Type</u>	<u>Sex</u>	<u>Total</u>	Shoulder Belted %	Full System Usage
Auto Belts		3090	79.6	68.8
	Male	1371	79.4	69.3
	Female	1719	79.8	68.4
Air Bags		230	73.9	73.5
-	Male	125	71.2	70.4
	Female	105	77.1	77.1
Manual Belts		831	76.3	73.8
	Male	413	70.2	68.8
	Female	418	82.3	78.7

drivers using the full system are about the same for both male and female drivers.

Finally, Table 6.6 examines belt use by driver race. In North Carolina, since the seat belt law with a \$25 citation went into effect in January 1987,

Table 6.6. Belt use by restraint type by race of driver.

Restraint <u>Type</u>	Race	<u>Total</u>	Shoulder Belted 	Full System Usage
Auto Belts		3090	79.6	68.8
	White	2737	79.4	69.6
	Non-white	353	81.3	62.0
Air Bags		230	73.9	73.5
2	White	217	74.2	73.7
	Non-white	13	69.2	69.2
Manual Belts		831	76.3	73.8
	White	719	77.1	74.5
	Non-white	112	71.4	68.8

the wearing rates of non-white drivers has consistently been slightly greater than that for their white counterparts. In this survey of new model cars, the wearing rates for the non-white driver are lower in both the air bag cars and the manual belt cars. They are slightly higher, however, in the automatic belt vehicles. For all three restraint types, the percentage of drivers using the full belt system is higher for the white driver ranging from nearly five to eight percentage points higher.

Discussion

Since all 1990 model year cars are required to be equipped with passive restraints (e.g., automatic seat belts or air bags) following a gradual phasein which started in 1987, and since relatively little is known about public acceptance of these new devices, an opportunity was seized upon to capture data on driver belt usage for new model cars in North Carolina. This survey was carried out in conjunction with our periodic statewide survey of belt use being done to help evaluate our mandatory use law.

For the most part, the sample of 4,151 drivers were driving 1986 and later model year cars selected on the basis of having center, high-mounted brake lights. Some 74.5 percent of the sample were in automatic belt cars with 20.0 percent in cars equipped with manual three-point belts and the remaining 5.5 percent in air bag cars with manual three-point belts.

Shoulder belt usage rates for all systems (automatic belts 79.6 percent, air bags 73.9 percent, manual belts 76.3 percent) considerably exceeded the statewide average of approximately 60 percent largely because these vehicles are nearly all new model cars. Within the automatic belt group, usage was highest (94.2 percent) for the motorized automatic shoulder/manual lap belt system, intermediate (83.8%) for the non-motorized system with automatic shoulder belts and lowest (76.9%) for the non-motorized automatic shoulder/automatic lap belt system.

The results seen in North Carolina are quite consistent with the 19-city U.S. DOT survey rates of 97.2 percent, 81.3 percent, and 76.9 percent, respectively. There are several features of this survey which are unique. First, data were collected on two types of automatic belt system misuse. The first type consisted of drivers not fully utilizing the restraint system available. The second kind of misuse dealt with misuse of the shoulder belt falling into categories of (1) belt being detached from the door mounting, (2) excessive slack in the belt, and (3) shoulder belt being placed underneath

the arm. The other area in which this survey is unique is that it compares usage rates by various driver characteristics, namely, age, sex and race.

With respect to the first type of misuse, that is, failing to utilize the full restraint system provided, this problem was primarily experienced by drivers in vehicles equipped with motorized shoulder belts and manual lap belts such as the Ford Escort and Tempo and the Toyota Camry and Cressida. Here, there was a 70 percent decrease in "usage" (from 94.2% "Shoulder Belted" to 28.6% "Fully Restrained"). The corresponding drop in percent- ages for the other systems (non-motorized automatic belts as well as three-point systems available in both the air bag cars and in the manual belt cars) was relatively minor -- generally, only several percentage points.

The most common form of incorrect usage was having too much slack in the shoulder belt (3.0% of the sample) followed equally by the belt being detached from the door mounting (1.3%) and the shoulder belt being placed underneath the arm (1.5%). These rates of misuse totaling nearly six percent are very consistent with that which has been observed in the North Carolina statewide surveys of all cars regardless of belt system or model year.

With respect to driver age, the younger driver (under 25) had lower usage rates than other age groups except for the case of manual belts. The lower rates for the younger driver are certainly consistent with past seat belt surveys conducted in the U.S. The decline accounting for full system usage is likewise greatest for the under 25 year old dropping to 57.4 percent.

As has been seen in other surveys, females tended to wear manual threepoint belts more frequently than males ranging from six to 12 percentage points higher. Female usage of automatic belts is most comparable with that of the male drivers. Likewise, their usage of the full restraint system (i.e., "Full System Usage Z") is higher in the air bag cars and in the manual belt cars than that of male drivers.

In our North Carolina surveys covering cars of model years 1968 and newer, belt usage has consistently been higher for non-white drivers than for white drivers since implementation of the North Carolina seat belt law in January 1987. In this survey involving newer model cars, belt usage for non-white drivers was generally somewhat lower in the air bag and manual belt cars. For all three restraint systems, "Full System" usage rates for non-white drivers were lower than that for their white counterparts.

Several points bear mentioning. First, more and more cars are being produced with motorized shoulder belt systems. However, even though the shoulder belt was nearly always in use (94.2%), fewer than 30 percent of the drivers observed in this survey were getting the full protection available which included buckling the lap belt. Sometimes this was likely a result of ignorance while perhaps more often it was the result of not developing the special habit required. Evidently, having the motorized belt fall into place gives drivers of these cars the feeling of being buckled up. Clearly, additional educational efforts are warranted in this situation.

Secondly, the three-point non-motorized automatic belt systems were defeated nearly 25 percent of the time. Motorists indicate that it is very easy to disconnect these systems and often if they elect to use them, they use them as manual belts; in other words, they disconnect them as they get out of the car and reconnect them once they have entered the car for the next trip. It would seem clear that usage rates of approximately 75 percent for these nonmotorized automatic shoulder/automatic lap belt systems is below what was anticipated.

On an encouraging side, it is good to see relatively high usage of the three-point manual belts in air bag cars (namely, 73.9%). Clearly air bags are designed to be supplemental systems in that they do not protect the occupant in many crash modes such as side impacts or rollovers. From data collectors talking with many drivers in air bag-equipped cars, it was clear that many did appreciate the fact that they needed to use the manual three-point belts. However, some drivers were not even aware that their car was equipped with air bags. Clearly, as more and more air bag cars are produced, public information and education with respect to utilizing the manual belts will become increasingly important.

CHAPTER 7. AN EMPIRICAL EXAMINATION OF THE DOUBLE PAIR COMPARISON METHOD FOR EXAMINING SEAT BELT EFFECTIVENESS

Background and Data

One of the basic questions posed for analysis in this project dealt with effectiveness of existing manual restraints. As has been addressed previously in this report, this question cannot be answered directly from recent state level crash data because of the unreliability of the information provided by the investigating officer.

However, there does exist a national data set that contains reliable data on seat belt use by occupants of towed vehicles involved in 12,050 crashes between January 1977 and March 1979. This data collected in the National Crash Severity Study (NCSS) was intended to provide a data base on the crash conditions of towaway passenger vehicle crashes, which was sufficiently large and representative to provide an overall picture of these conditions while detailed enough to support in-depth analysis of such issues as seat belt effectiveness controlling for such factors as crash severity. For a detailed description of the history of NCSS along with an explanation and description of the sample frame, sampling plan, and automated data file (accident level variables, vehicle level variables, and occupant level variables), see NHTSA (1981).

This data file was used to investigate belt effectiveness comparing two different methods: (1) double pair comparison (Evans, 1986) -- a method being used increasingly by NHTSA and the research community in general -- and (2) traditional estimates controlling for crash severity as measured by the joint effect of extent and region of principal vehicle damage (Partyka, 1988).

As a proportional sampling scheme was utilized in NCSS, the data utilized in both procedures were weighted data, where the weights were the inverse of the sampling proportions. To obtain more data on the more serious crashes, the following sampling strata according to the most severe injury consequence were utilized:

- (1) 100%: fatality or overnight hospitalization
- (2) 25%: transported to a hospital or emergency treatment facility (but no overnight hospitalization)
- (3) 10%: not transported and not Team 6 (Southwest Research Institute) in the post-March 1978 period
- (4) 5%: not transported, Team 6 in the post-March 1978 period

The variables utilized in the analysis included the following: yes if L and S, L only, S only, Occupant belt use = air bag and L no if not used Occupant Injury AIS (Abbreviated Injury Scale) for most severe injury front side (left or right) Primary damage = area of car rear top undercarriage 1 minimum damage Extent of primary 2 damage to the car 3 4 5 6+7 8+9 maximum damage

The highest damage levels were combined due to sample size limitations. The final data set consisted of complete information on 11,692 drivers, 5376 right front seat occupants, 675 left rear seat occupants, and 826 right rear seat occupants. As will be seen, sample size limitations precluded using rear seat occupants in the double pair comparison investigation.

Double Pair Comparison

<u>Method</u>. This procedure was utilized by Evans (1986) to determine how occupant characteristics affect fatality risk in traffic crashes. The method, which originally used data from the Fatal Accident Reporting System (FARS), compares pairs of occupants -- the "subject" occupant and an "other" occupant. The probabilities of a fatality to the subject occupant when that occupant has one of two characteristics (e.g., restrained by a seat belt) are compared. Since the "other" occupant is in the same vehicle, many vehicle and roadway factors are controlled for when comparing the fatality risk of the "subject" occupant with the "other" occupant. Such factors would include vehicle size, crash severity, roadside hazard, etc. Thus, the "other" occupant serves in an exposure estimating role.

Areas of applicability of this procedure have included car occupant fatality risk as a function of sex, age, or alcohol use; motorcycle fatality risk as a function of helmet use; potential fatality reductions through eliminating occupant ejection from cars; and relative fatality risk in different seating positions versus car model year.

Griffin (In Press) presents a very intuitive and clear description of the method and relates it to earlier work by Woolf (1955) where he applies this weighted average logs odds ratio statistical technique to the problem of estimating the relationship between blood group and disease. In addition, Griffin raises the possibility of three potential problems in Evans' application of log odds ratio methodology and suggests several modifications to the method.

As the details of the procedure are well described in both Evans (1986) and Griffin (In Press), they will not be repeated herein. Rather, the sample calculations will be illustrated in the next section for examining driver belt effectiveness at AIS \geq 2 when compared with the right front seat occupant (the "other" occupant).

<u>Results</u>. In this analysis, the effectiveness of occupant restraint use (lap and/or shoulder) was restricted to driver and to right front seat occupants due to sample size limitations for the rear seat occupants. Injury criteria used included the following:

Moderate	AIS	<u>></u>	2
Serious	AIS	Σ	3
Severe	AIS	Σ	4

Thus, for comparing the driver (subject) with the right front seat occupant (other), the double pairs and corresponding injury (AIS \geq 2 vs. AIS = 1) given in Table 7.1 were involved:

Table 7.1. Double pair (belt use x injury) distribution.

		$D^{1}F^{2}$	D^2F^2	D^2F^1	$D^{1}F^{1}$	Total
(1)	D _u F _u D _r F _u	577 16	421 4	422 2	1689 44	3109 66
(2)	$\begin{array}{c} {}^{D_{u}F_{r}} \\ {}^{D_{r}F_{r}} \end{array}$	0 7	6 14	3 17	19 67	28 105
						3308

where

 D_u = unrestrained driver D_r = restrained driver D^1 = uninjured (AIS=1) driver D^2 = injured (AIS \ge 2) driver

and similarly for F, the right front seat occupant.

The odds ratio, U, for the driver with an unrestrained "other" occupant (section (1) of Table 7.1) is calculated from the following:

	AIS ≥ 2		
	F	D	
D _u F _u	998	843	
D _r F _u	20	6	

Thus

U₍₁₎ = odds ratio for driver vs unbelted "other" = (998/20) ÷ (843/6) = 0.355

Likewise

$$U_{(2)} = (6/21) \div (9/31) = 0.984$$

Now since the distribution of U is rather skewed, we utilize a log transformation as follows:

> $L_{(1)} = \ln (\text{odds ratio}) = \ln (U_{(1)}) = \ln (0.355) = -1.036$ $L_{(2)} = \ln (U_{(2)}) = -0.016$

Then to combine the log odds ratios, $L_{(1)}$ and $L_{(2)}$, use $w_{(i)} = 1/(L_{se(i)})^2$ where an approximate estimate of the standard error of $L_{(1)}$ (assuming initial simple random sampling) is given by

$$L_{se(1)} = (1/998 + 1/20 + 1/843 + 1/6)^{\frac{1}{2}}$$

= 0.468

and similarly, $L_{se(2)} = 0.598$. Thus, $w_{(1)} = 4.57$ and $w_{(2)} = 2.80$, and the overall log odds ratio is given by

$$\bar{L} = \Sigma w_{(i)} L_{(i)} / \Sigma w_{(i)}$$

$$= [(4.57)(-1.036) + (2.80)(-0.016)]/(4.57 + 2.80)$$

$$= -0.648$$

Therefore,

$$\bar{U} = e^{L} = 0.523$$

and the desired effectiveness estimate for reducing driver AIS ≥ 2 injuries is given by

$$E = (1-U)100 = 47.7\%$$

Ordinarily, as indicated in Evans (1986), we would derive estimates of effectiveness for the driver comparing with the left rear occupant, then the right rear occupant, and finally obtain an overall weighted estimate that combines the three separate estimates. However, the NCSS data limitations preclude deriving estimates for either of the rear seating positions. Thus, the double pair comparison estimate for belt effectiveness in reducing driver AIS \geq 2 injuries is given by 47.7 percent.

In similar manner, double pair comparison estimates are derived for serious (AIS \geq 3) and severe (AIS \geq 4) injuries for the driver along with corresponding estimates for the right front seat passenger. These estimates are presented in Table 7.2 below.

Seat Position	Injury Th	reshold	Effectiveness Estimate (%)	
Driver	Moderate Serious Severe	AIS <u>></u> 2 AIS <u>></u> 3 AIS <u>></u> 4	47.7 36.3 40.2	
Right Front Passenger	Moderate Serious Severe	AIS <u>></u> 2 AIS <u>></u> 3 AIS>4	65.7 60.6 46.1	

Table 7.2. Double pair comparison effectiveness estimates for the weighted NCSS data.

Traditional Estimates of Effectiveness

<u>Method</u>. Estimates of belt effectiveness were derived both without making any adjustments -- "overall" -- as well as adjusting for vehicle damage severity -- "adjusted". Extent of primary damage to the car (1 = minimum, 9 = maximum) combined with primary damage area of car (front, side, rear, top, undercarriage) was utilized to define vehicle damage severity.

<u>Overall estimates</u>. Here the traditional estimate is derived for AIS ≥ 2 from the table of weighted driver (injury x belt use) frequencies

		AIS <u>></u> 2	AIS=1	Total
	Yes	150	686	836
Deit	No	3624	8712	12336

as follows:

 $E_o = (1 - \frac{\text{proportion of belted drivers with AIS > 2}}{\text{proportion of unbelted drivers with AIS > 2}}) 100$

$$= (1 - \frac{150/836}{3624/12336}) \ 100$$

= 38.9 %

Adjusted estimates. To the extent that belted drivers are involved in less serious crashes than unbelted drivers -- and there is evidence that such is the case (Hunter, et al., 1988) -- crash severity should be controlled for in calculations of overall belt effectiveness. Partyka (1988) illustrates one such adjustment procedure using a combination of NCSS and NASS (National Accident Sampling System) data.

As was illustrated by Partyka (1988), the weighted NCSS data in this analysis are adjusted in three ways: (1) adjust damage type (extent x impact site) of <u>unrestrained</u> drivers to mirror the damage type for <u>restrained</u> drivers; (2) adjust damage type of <u>restrained</u> and <u>unrestrained</u> drivers to reflect the <u>overall</u> crash conditions for all drivers; and (3) adjust damage type of <u>restrained</u> drivers to reflect the crash conditions of <u>unrestrained</u> drivers. These estimates are then compared among themselves as well as with both the overall estimates and the estimates from the double pair comparison procedure.

To illustrate, consider the damage type adjustment of the unrestrained NCSS drivers to reflect the damage type experienced by the restrained drivers. The basic damage distribution is given for restrained drivers as follows:

	Extent	Front	Side	Rear	Тор	Under	Total
	1 2 3 4 5 6+7 8+9			r _{ij}			
-	Total						R

Damage Area

where

r_{ij} = no. restrained drivers with vehicle extent = i
and area = j, i = 1,...,7; j = 1,...,5
e.g., r₁₁ = minimal damage primarily to the front
R = total no. restrained drivers

Similarly, let

^u ij	=	no. unrestrained drivers with vehicle extent, i and area, j
^t ij	=	no. drivers (restrained or unrestrained) with vehicle extent, i and area, j
	=	$r_{ij} + u_{ij}$

The actual damage type (injury AIS ≥ 2) distributions for restrained $(r_{ij}(r_{Iij}))$ and unrestrained $(u_{ij}(u_{Iij}))$ drivers are given in Tables 7.3 and 7.4, respectively.

Extent	Front	Side	Rear	Тор	Undercarriage
1	145 (22)*	16 (0)	34 (0)	1 (1)	4 (0)
2	142 (19)	67 (2)	12 (0)	5 (0)	6 (1)
3	94 (33)	95 (22)	8 (0)	20 (4)	0 (0)
4	18 (0)	27 (10)	5 (0)	9 (5)	0 (0)
5	2 (2)	2 (0)	4 (0)	2 (2)	0 (0)
6+7	6 (4)	1 (1)	10 (0)	5 (5)	0 (0)
3 . ⊦9	22 (3)	0 (0)	5 (1)	0 (0)	0 (0)

Table 7.3. Damage type (injury AIS ≥ 2) distribution for <u>restrained</u> drivers.

Area

* 145 (22): 145 drivers in cars with minor frontal damage of which 22 had AIS \geq 2

Table 7.4. Damage type (injury AIS ≥ 2) distribution for <u>unrestrained</u> drivers.

	1		Area				
Extent	Front	Side	Rear	Тор	Undercarriage		
1	1406 (221)	135 (13)	107 (2)	4 (0)	46 (4)		
2	3026 (748)	614 (105)	149 (18)	25 (2)	56 (16)		
3	1345 (548)	1655 (518)	96 (11)	258 (84) 15 (5)		
4	400 (233)	376 (199)	78 (4)	112 (38) 1 (1)		
5	199 (109)	92 (59)	45 (12)	82 (39) 0 (0)		
6+7	231 (103)	33 (27)	76 (20)	52 (24) 0 (0)		
8+9	194 (89)	8 (6)	6 (5)	3 (2)	0 (0)		
					10,925		

Then the damage type distribution for injured (AIS \geq 2) <u>unrestrained</u> drivers <u>adjusted</u> for the damage type of <u>restrained</u> drivers (adjustment (1)) is given by

$$u_{ij}^{\star} = r_{ij} \left(\frac{u_{Iij}}{u_{ij}} \right)$$

where

 u_{Iij} = no. injured (AIS ≥ 2) unrestrained drivers in cell (i,j)

Note that the adjusted u_{ij}^{\star} is the product of the injury rate for the unrestrained occupant and the severity distribution of the restrained occupant. Then the traditional effectiveness estimate, with the unrestrained driver data adjusted to mirror the damage distribution of the restrained drivers (1), is given by

$$E(r) = 1 - \left(\frac{\text{proportion of belted drivers with AIS > 2}}{\text{proportion of "unrestrained" drivers with AIS > 2}}\right) 100$$
$$= 1 - \left(\frac{\Sigma r_{\text{Iij}} / R}{\Sigma u_{\text{Iij}}^{\star} / \Sigma u_{\text{ij}}^{\star}}\right) 100$$
(1)

Similar calculations yield the other adjustments, namely,

(2) Adjusting for total drivers

$$r_{ij}^{*} = t_{ij} \left(\frac{r_{Iij}}{r_{ij}} \right)$$
$$u_{ij}^{*} = t_{ij} \left(\frac{u_{Iij}}{u_{ij}} \right)$$

(2) Adjusting for <u>unrestrained</u> drivers

$$\mathbf{r}_{ij}^{\star} = \mathbf{u}_{ij} \left(\frac{\mathbf{r}_{Iij}}{\mathbf{r}_{ij}} \right)$$

The effectiveness estimates, $E_{(t)}$ and $E_{(u)}$, follow as in equation (1).

<u>Results</u>. The overall estimates along with the three estimates adjusting for damage type differences are provided in Table 7.5. For comparison purposes, the corresponding estimates derived using the double pair procedure are also shown in the table.

	Belt Ef	fectiveness (%)
	Moderate AIS ≥ 2	Serious AIS \geq 3	Severe AIS \geq 4
DRIVER:			
Traditional			
Overall	38.9	28.0	52.6
Adjusted for			
(1) Restrained	33.5	17.1	42.6
(2) Total	29.5	9.8	30.3
(3) Unrestrained	29.2	9.4	29.6
Double Pair Method	47.7	36.3	40.2
RIGHT FRONT:			
Traditional			
Overall	38.2	41.5	3.27*
Double Pair Method	65.7	60.6	46.1

Table 7.5. Belt effectiveness for traditional method (overall and adjusted for damage type) and double pair comparison method.

*only 9 belted, injured cases

Discussion.

This chapter has examined belt effectiveness in reducing moderate (AIS \geq 2), serious (AIS \geq 3), and severe (AIS \geq 4) injuries using the weighted National Crash Severity Study data. This file was used because it contains reliable restraint usage data by seating position along with information on crash severity as indicated by the combination of extent of damage (minor = 1 to maximum = 9) and area of principal damage (front, side, rear, top, undercarriage). Only occupants of cars required to be towed from the scene were used in the analysis.

As can be seen from Table 7.5, the estimates from the double pair comparison method generally exceed those from the traditional estimates, which, in turn, are generally higher than those for any of the estimates adjusted for damage type. Among the latter estimates, adjusting for the damage type distribution of the <u>unrestrained</u> drivers (3) has the greatest effect on the effectiveness estimates across all injury levels; adjusting for the <u>restrained</u> drivers (1) has the least impact.

Sample size limitations of the weighted NCSS data precluded a full analysis of belt effectiveness using the double pair comparison method with a weighted combination of log odds ratios (i.e., comparing driver (D) with right front (F), with left rear (L), and with right rear (R), and then combining the results to obtain an overall belt effectiveness estimate for the driver and likewise for the other seating positions).

Likewise sample size limitations posed problems with the traditional overall and adjusted estimates. For example, for severely injured (AIS \geq 4) right front seat occupants, there were only 9 belted cases. Similarly in the adjustment procedure (especially adjusting for the restrained damage distribution), there were a number of empty cells even when combining the upper extent categories. Indeed, it would have been helpful to have had data adequate for making additional adjustments such as by driver age and sex.

Nevertheless, it was helpful to see the relative consistency of the estimates from both procedures at each injury level.

REFERENCES

Accident Facts. (1989 edition) (1989). Chicago, IL: National Safety Council.

- Bondy, N. and Hart, S. (1982). An analysis of the ejection problem using NCSA automated data files. Washington, D.C.: National Highway Traffic Safety Administration.
- Bowman, B.L. and Rounds, D.A. (1989). Restraint system usage in the traffic population. 1988 annual report. Washington, D.C.: U.S. Department of Transportation.
- Campbell, B.J., Stewart, J.R. and Campbell, F.A. (1988). Changes in death and injury associated with safety belt laws 1985-1987. Chapel Hill: University of North Carolina Highway Safety Research Center.
- Campbell, B.J., Stewart, J.R. and Campbell, F.A. (1987). 1985-1986 experience with belt laws in the United States. Chapel Hill: University of North Carolina Highway Safety Research Center.
- Campbell, B.J., Hunter, W.W., Gemmings, M.G. and Stewart, J.R. (1984). The use of economic incentives and public education to increase seat belt use in a community. Chapel Hill: University of North Carolina Highway Safety Research Center.
- Campbell, B.J. (1969). Seat belt use among drivers in accidents and drivers in the population-at-risk. Chapel Hill: University of North Carolina Highway Safety Research Center.
- Chi, G.Y.H. and Reinfurt, D.W. (1981). Comparison of the automatic shoulder belt/knee bolster restraint system with the lap and shoulder belt system in VW Rabbits. Washington, D.C.: U.S. Department of Transportation.
- Esterlitz, J.R. (1989). Relative risk of death from ejection by crash type and crash mode. <u>Accident Analysis and Prevention</u>, Vol. 21, No. 5 pp. 459-468. (October 1989).
- Evans, L. (1986). Double pair comparison A new method to determine how occupant characteristics affect fatally risks in traffic crashes. <u>Accident Analysis and Prevention</u>, Vol. 18, No. 3, pp. 217-227. (June 1986).
- Fleiss, J.C. (1973). <u>Statistical Methods for Rates and Proportions</u>. New York: John Wiley and Sons.
- Griffin, L.I. (In press). A criticism of Evans' double pair comparison method. Accident Analysis and Prevention.
- Harvey, A.C. and Durbin, J. (1986). The effects of seat belt legislation on British road casualties: A case study in structural time series modelling. <u>The Journal of the Royal Statistical Society - Series A</u> (General), Vol. 149, Part 3, pp. 189-227.

REFERENCES (Con't)

- Hedlund, J.H. (1979). The National Crash Severity Study and its relationship to ESV design criteria. DOT HS 805-199. <u>Proceedings of the 7th.</u> <u>International Technical Conference on Experimental Safety Vehicles</u>. Washington, D.C.: U.S. Department of Transportation.
- Huelke, D.F., Marsh, J.C. and Sherman, H.W. (1972). Analysis of rollover accident factors and injury causation. <u>Proceedings of 16th Conference of</u> <u>the American Association for Automotive Medicine</u>, Chapel Hill: October 1972.
- Hunter, W.W., Reinfurt, D.W., Stewart, J.R. and St. Cyr, C. (1989). Analysis of occupant restraint issues from state accident data. Second year report. Chapel Hill: University of North Carolina Highway Safety Research Center.
- Hunter, W.W., Reinfurt, D.W. and Hirsch, M.G. (1988). Analysis of occupant restraint issues from state accident data. First year report. Chapel Hill: University of North Carolina Highway Safety Research Center.
- Hunter, W.W., Stutts, J.C., Stewart, J.R. and Rodgman, E.A. (1988). Overrepresentation of seat belt non-users in traffic crashes. Final report. Grant No. DTNH22-Z-86-07392, Washington, D.C.: National Highway Traffic Safety Administration.
- Nash, C.E. (1989). The effectiveness of automatic belts in reducing fatality rates in Toyota Cressidas. <u>Accident Analysis and Prevention</u>, Vol 21, No. 6, pp. 517-527. (December 1989).
- National Highway Traffic Safety Administration (1981). NCSS the analyst's comparison. A description of the National Crash Severity Study statistical data file. Washington, DC: National Highway Traffic Safety Administration.
- Partyka, S.C. (1988). Lives saved by seat belts from 1983 through 1987. Washington, D.C.: U.S. Department of Transportation.
- Partyka, S.C. (1988). Papers on adult seat belts Effectiveness and use. Washington, DC: National Highway Traffic Safety Administration.
- Reinfurt, D.W., Campbell, B.J., Stewart, J.R. and Stutts, J.C. (1988). North Carolina's occupant restraint law: A three-year evaluation. Chapel Hill: University of North Carolina Highway Safety Research Center.
- Reinfurt, D.W., Rodgman, E.D. and Stutts, J.C. (1982). Trend analysis: state and national accident summary files. Final report. Project No. NRD-01-2-7003. Washington, D.C.: National Highway Traffic Safety Administration.
- Sikora, J. (1986). Relative risk of death for ejection occupants in fatal traffic accidents. DOT HS 807-096. Washington, D.C.: National Highway Traffic Safety Administration.

REFERENCES (Con't)

- Statistical Abstract of the United States: 1987 (107th Edition) (1986). Washington, D.C.: U.S. Bureau of the Census.
- Williams, A.F., Wells, J.K., Lund, A.K. and Teed, N. (1989). Observed use of automatic seat belts in 1987 cars. <u>Accident Analysis & Prevention</u>, Vol. 21, No. 5, pp. 427-433. (October 1989).
- Wolf, R.A. (1962). The discovery and control of ejection in automobile accidents. <u>Journal of the American Medical Association</u>, Vol. 180, pp. 220-224. (April 21, 1962).
- Woolf, B. (1955). On estimating the relationship between blood group and disease. Annals of Human Genetics, Vol. 19, pp. 251-253.

APPENDIX A

Data for New Jersey and Pennsylvania

Table A.1. Number and percent of covered occupants in all accidents with moderate, major or fatal injuries across time periods (data for Figure 2.1).

PENNSYLVANIA

	1984					1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	
Injury Severity	,												
Killed	228	206	243	243	186	253	259	253	229	271	293	290	
	(0.58)	(0.54)	(0.61)	(0.56)	(0.51)	(0.62)	(0.64)	(0.54)	(0.60)	(0.64)	(0.64)	(0.59)	
Major	902	891	903	1006	816	1009	953	1081	846	1103	1110	1127	
	(2.31)	(2.33)	(2.27)	(2.31)	(2.22)	(2.47)	(2.35)	(2.31)	(2.22)	(2.60)	(2.43)	(2.31)	
Moderate	5396	5454	5618	6321	5150	5859	5732	6332	5405	6005	6483	7204	
	(13.80)	(14.26)	(14.09)	(14.53)	(14.03)	(14.36)	(14.15)	(13.51)	(14.17)	(14.17)	(14.22)	(14.75)	

NEW JERSEY

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Severity												
Killed	65	94	107	113	107	119	108	107	102	104	131	124
	(0.10)	(0.12)	(0.14)	(0.13)	(0.15)	(0.15)	(0.13)	(0.11)	(0.13)	(0.11)	(0.14)	(0.12)
Major	921	1148	1114	1207	946	1071	1148	1222	974	1047	1245	1276
	(1.41)	(1.47)	(1.46)	(1.42)	(1.35)	(1.35)	(1.41)	(1.29)	(1.27)	(1.14)	(1.33)	(1.28)
Moderate	4879	5599	5667	6142	5067	5457	5395	6019	4990	5864	6203	6223
	(7.50)	(7.18)	(7.44)	(7.25)	(7.21)	(6.88)	(6.65)	(6.33)	(6.51)	(6.38)	(6.64)	(6.22)
Table A.2.Number and percent of covered occupants in all accidents with certain injurytypes across time periods - Pennsylvania data (data for Figures 2.2a and 2.3a).

PENNSYLVANIA

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Type												
Bleeding	2338	2271	2426	2558	2036	2417	2383	2634	2157	2487	2640	2799
	(5.98)	(5.94)	(6.09)	(5.88)	(5.54)	(5.92)	(5.88)	(5.62)	(5.65)	(5.87)	(5.79)	(5.73)
Broken Bones	736	707	720	802	638	747	736	799	666	767	902	907
	(1.88)	(1.85)	(1.81)	(1.84)	(1.74)	(1.83)	(1.82)	(1.70)	(1.75)	(1.81)	(1.98)	(1.86)
Concussion	296	263	245	301	271	256	255	254	251	265	293	321
	(0.76)	(0.69)	(0.61)	(0.69)	(0.74)	(0.63)	(0.63)	(0.54)	(0.66)	(0.63)	(0.64)	(0.66)
Complaint of	2146	2160	2259	2677	2260	2562	2435	2745	2397	2724	2861	3293
Pain	(5.49)	(5.65)	(5.67)	(6.15)	(6.16)	(6.28)	(6.01)	(5.86)	(6.28)	(6.43)	(6.27)	(6.74)

•

Table A.3.Number and percent of covered occupants in all accidents with certain injury
across time periods - New Jersey (data for Figures 2.2b and 2.3b).

	NEW JERSEY													
		19	984			19	985			19	986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-		
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec		
Injury Type														
Concussion	177	178	187	231	176	156	178	196	184	199	186	235		
	(0.27)	(0.23)	(0.25)	(0.27)	(0.25)	(0.20)	(0.22)	(0.21)	(0.24)	(0.22)	(0.20)	(0.24)		
Internal	151	239	224	221	172	234	246	283	206	231	300	299		
	(0.23)	(0.31)	(0.29)	(0.26)	(0.24)	(0.30)	(0.30)	(0.30)	(0.27)	(0.25)	(0.32)	(0.30)		
Bleeding	3488	4006	3924	4352	3545	3739	3850	4144	3532	3807	4185	4265		
	(5.36)	(5.14)	(5.15)	(5.14)	(5.05)	(4.72)	(4.74)	(4.36)	(4.61)	(4.14)	(4.48)	(4.27)		
Fracture/	318	345	371	405	337	355	338	394	319	390	452	421		
Dislocation	(0.49)	(0.44)	(0.49)	(0.48)	(0.48)	(0.45)	(0.42)	(0.41)	(0.42)	(0.42)	(0.48)	(0.42)		
Complaint of	10190	12652	12514	14588	11750	13948	13822	16717	13199	16025	16058	16935		
Pain	(15.66)	(16.23)	(16.43)	(17.22)	(16.73)	(17.59)	(17.03)	(17.59)	(17.21)	(17.44)	(17.18)	(16.94)		

د از مانده در از از از مانده با مانده با مانده و موجود و مربع در از از از از از از مانده محمد مراجع زیرو مربع و

Table A.4.Number and percent of covered occupants in all accidents with certain injury
locations across time periods - Pennsylvania data (data for Figure 2.4a).

PENNSYLVANIA

		1984				19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Face	1426	1307	1336	1524	1264	1341	1217	1545	1266	1373	1462	1646
	(3.65)	(3.42)	(3.35)	(3.50)	(3.44)	(3.29)	(3.00)	(3.30)	(3.32)	(3.24)	(3.21)	(3.37)
Head	1967	1969	1974	2309	1892	2074	2001	2259	1956	2105	2189	2555
	(5.03)	(5.15)	(4.95)	(5.31)	(5.15)	(5.08)	(4.94)	(4.82)	(5.13)	(4.97)	(4.80)	(5.23)
Neck	721	785	820	886	738	882	893	960	820	1053	1084	1159
	(1.84)	(2.05)	(2.06)	(2.04)	(2.01)	(2.16)	(2.20)	(2.05)	(2.15)	(2.48)	(2.38)	(2.37)
Back	434	445	471	498	409	510	525	501	477	527	580	606
	(1.11)	(1.16)	(1.18)	(1.14)	(1.11)	(1.25)	(1.30)	(1.07)	(1.25)	(1.24)	(1.27)	(1.24)
Chest/	527	468	487	565	463	503	469	587	479	516	600	658
Stomach	(1.35)	(1.22)	(1.22)	(1.30)	(1.26)	(1.23)	(1.16)	(1.25)	(1.26)	(1.22)	(1.32)	(1.35)

Table A.5. Number and percent of covered occupants in all accidents with certain injurylocations across time periods - New Jersey data (data for Figure 2.4b)

		1	984			1	985			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Head	6357	6910	6765	8103	6296	6303	6246	7962	6756	7296	7397	8194
	(9.77)	(8.86)	(8.88)	(9.57)	(8.96)	(7.95)	(7.70)	(8.38)	(8.81)	(7.94)	(7.92)	(8.20)
Face	2224	2365	2199	2796	2266	2093	2096	2547	2123	2221	2220	2633
	(3.42)	(3.03)	(2.89)	(3.30)	(3.23)	(2.64)	(2.58)	(2.68)	(2.77)	(2.42)	(2.38)	(2.63)
Neck	2614	3998	4164	4371	3471	4820	4944	5277	4041	5510	5695	5665
	(4.02)	(5.13)	(5.51)	(5.16)	(4.94)	(6.08)	(6.09)	(5.55)	(5.27)	(6.00)	(6.09)	(5.67)
Back	1487	1724	1802	2043	1739	2047	2105	2560	1925	2417	2516	2428
	(2.28)	(2.21)	(2.37)	(2.41)	(2.48)	(2.58)	(2.59)	(2.69)	(2.51)	(2.63)	(2.69)	(2.43)
Chest/Abd.	1867	1026	1000	1232	1115	1346	1333	1557	1235	1405	1535	1656
Pelvis	(1.33)	(1.31)	(1.32)	(1.45)	(1.59)	(1.70)	(1.65)	(1.63)	(1.61)	(1.53)	(1.64)	(1.65)

Table A.6. Number and percent of covered occupants in rollover accidents with bleeding or serious (A+K) injuries across time periods (data for Figure 2.5).

PENNSYLVANIA

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	110	147	133	134	82	166	147	124	113	177	185	129
	(8.54)	(12.78)	(11.08)	(9.29)	(7.21)	(13.13)	(11.81)	(8.12)	(7.86)	(12.67)	(12.19)	(7.57)
Bleeding	117	175	196	208	122	199	206	156	161	208	244	189
	(9.09)	(15.22)	(16.32)	(14.41)	(10.73)	(15.73)	(16.55)	(10.22)	(11.20)	14.89))	(16.07)	(11.10)

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	15	25	15	26	8	18	15	10	10	12	19	16
	(4.79)	(9.16)	(5.02)	(8.00)	(2.91)	(5.55)	(4.92)	(2.97)	(3.06)	(4.11)	(5.69)	(4.64)
Bleeding	43	32	41	55	44	49	50	53	43	39	51	42
	(13.74)	(11.72)	(13.71)	(16.92)	(16.00)	(15.12)	(16.39)	(15.73)	(13.15)	(13.36)	(15.27)	(12.17)

Table A.7. Number and percent of covered occupants in non-rollover accidents with bleeding or serious (A+K) injuries across time periods (data for Figure 2.6).

an and states way

PENNSYLVANIA

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	751	712	758	827	676	811	792	907	720	903	923	936
	(2.86)	(2.91)	(3.01)	(2.93)	(2.80)	(3.12)	(3.07)	(2.98)	(2.85)	(3.34)	(3.16)	(2.95)
Bleeding	1747	1664	1752	1851	1513	1735	1718	1947	1586	1811	1892	2041
	(6.65)	(6.79)	(6.96)	(6.56)	(6.26)	(6.68)	(6.67)	(6.40)	(6.29)	(6.69)	(6.48)	(6.44)

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	Jul-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	971	1217	1206	1294	1045	1172	1241	1319	1066	1139	1357	1384
	(1.50)	(1.57)	(1.59)	(1.53)	(1.49)	(1.49)	(1.53)	(1.39)	(1.39)	(1.24)	(1.46)	(1.39)
Bleeding	3445	3974	3883	4297	3501	3690	3800	4091	3489	3768	4134	4223
	(5.32)	(5.12)	(5.12)	(5.09)	(5.00)	(4.67)	(4.70)	(4.32)	(4.57)	(4.11)	(4.44)	(4.24)

Table A.8. Number and percent of uninjured covered occupants in rollover and non-rollover accidents across time periods (data for Figure 2.7).

PENNSYLVANIA

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Uninjured												
Non-Rollover	21652	20143	20666	23185	20019	21381	21147	25245	20745	22207	23848	25935
Uninjured	(82.43)	(82.18)	(82.12)	(82.17)	(82.84)	(82.32)	(82.05)	(82.94)	(82.22)	(82.00)	(81.71)	(81.86)
Rollover	912	648	684	903	779	679	695	1028	938	789	840	1126
Uninjured	(70.86)	(56.35)	(56.95)	(62.58)	(68.51)	(53.68)	(55.82)	(67.32)	(65.23)	(56.48)	(55.34)	(66.12)

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Uninjured												
Non-Rollover	47428	56525	54808	60610	50778	56978	58741	68961	55715	66753	67801	73265
Uninjured	(73.22)	(72.76)	(72.23)	(71.83)	(72.57)	(72.16)	(72.66)	(72.82)	(72.96)	(72.89)	(72.82)	(73.54)
Rollover	161	127	130	149	117	146	133	178	160	130	137	168
Uninjured	(51.44)	(46.52)	(43.48)	(45.85)	(42.55)	(45.06)	(43.61)	(52.82)	(48.93)	(44.52)	(41.02)	(48.70)

Table A.9. Number and percent of covered occupants in rollover accidents with certain injury locations across time periods - Pennsylvania data (data for Figures 2.8a and 2.9a).

PENNSYLVANIA

	1984					19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Face	50	62	80	93	51	81	77	67	64	77	84	90
	(3.89)	(5.39)	(6.66)	(6.44)	(4.49)	(6.40)	(6.18)	(4.39)	(4.45)	(5.51)	(5.53)	(5.28)
Head	109	145	146	173	109	175	156	146	158	171	177	155
	(8.47)	(12.61)	(12.16)	(11.99)	(9.59)	(13.83)	(12.53)	(9.56)	(10.99)	(12.24)	(11.66)	(9.10)
Neck	38	38	33	38	35	47	47	49	55	50	54	58
	(2.95)	(3.30)	(2.75)	(2.63)	(3.08)	(3.72)	(3.78)	(3.21)	(3.82)	(3.58)	(3.56)	(3.41)
Back	28	31	42	33	35	52	42	42	39	57	44	55
	(2.18)	(2.70)	(3.50)	(2.29)	(3.08)	(4.11)	(3.37)	(2.75)	(2.71)	(4.08)	(2.90)	(3.23)
Chest/	29	37	30	39	21	37	28	25	28	34	47	36
Stomach	(2.25)	(3.22)	(2.50)	(2.70)	(1.85)	(2.92)	(2.25)	(1.64)	(1.95)	(2.43)	(3.10)	(_{2.11})

Table A.10. Number and percent of covered occupants in rollover accidents with certain injury locations across time periods - New Jersey data (data for Figures 2.8a and 2.9a).

	NEW JERSEY													
		1	984			1	985			1	986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-		
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec		
Injury Location														
Head	39	33	37	52	36	47	42	45	49	40	39	46		
	(12.46)	(12.09)	(12.37)	(16.00)	(13.09)	(14.51)	(13.77)	(13.35)	(14.98)	(13.70)	(11.68)	(13.33)		
Face	13	15	10	17	16	8	12	10	12	6	12	13		
	(4.15)	(5.49)	(3.34)	(5.23)	(5.82)	(2.47)	(3.93)	(2.97)	(3.67)	(2.05)	(3.59)	(3.77)		
Neck	11	11	13	18	17	19	20	14	15	20	22	19		
	(3.51)	(4.03)	(4.35)	(5.54)	(6.18)	(5.86)	(6.56)	(4.15)	(4.59)	(6.85)	(6.59)	(5.51)		
Back	13	14	10	13	19	11	14	12	10	12	26	14		
	(4.15)	(5.13)	(3.34)	(4.00)	(6.91)	(3.40)	(4.59)	(3.56)	(3.06)	(4.11)	(7.78)	(4.06)		
Chest/Abd.	9	10	7	12	6	7	8	9	6	7	3	10		
Pelvis	(2.88)	(3.66)	(2.34)	(3.69)	(2.18)	(2.16)	(2.63)	(2.67)	(1.84)	(2.39)	(0.90)	(2.90)		

Table A.11. Number and percent of covered occupants in non-rollover accidents with certain injury locations across time periods - Pennsylvania data (data for Figures 2.10a and 2.11a).

PENNSYLVANIA

	1984					19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Face	1130	1025	1029	1145	987	1009	937	1211	993	1066	1139	1266
	(4.30)	(4.18)	(4.09)	(4.06)	(4.08)	(3.88)	(3.64)	(3.98)	(3.94)	(3.94)	(3.90)	(4.00)
Head	1379	1303	1305	1546	1259	1320	1345	1516	1302	1392	1447	1681
	(5.25)	(5.32)	(5.19)	(5.48)	(5.21)	(5.08)	(5.22)	(4.98)	(5.16)	(5.14)	(4.96)	(5.31)
Neck	353	349	390	433	349	402	438	453	434	498	504	567
	(1.34)	(1.42)	(1.55)	(1.53)	(1.44)	(1.55)	(1.70)	(1.49)	(1.72)	(1.84)	(1.73)	(1.79)
Back	219	220	234	243	204	222	261	225	244	236	299	283
	(0.83)	(0.90)	(0.93)	(0.86)	(0.84)	(0.85)	(1.01)	(0.74)	(0.97)	(0.87)	(1.02)	(0.89)
Chest/	371	296	322	371	296	329	317	389	309	344	392	450
Stomach	(1.41)	(1.21)	(1.28)	(1.31)	(1.22)	(1.27)	(1.23)	(1.28)	(1.22)	(1.27)	(1.34)	(1.42)

NEW JERSEY

		19	984			19	985			19	36	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Head	6318	6877	6728	8051	6260	6256	6204	7917	6707	7256	7358	8148
	(9.75)	(8.85)	(8.87)	(9.54)	(8.95)	(7.92)	(7.67)	(8.36)	(8.78)	(7.92)	(7.90)	(8.18)
Face	2211	2350	2189	2779	2250	2085	2084	2537	2111	2215	2208	2620
	(3.41)	(3.02)	(2.88)	(3.29)	(3.22)	(2.64)	(2.58)	(2.68)	(2.76)	(2.42)	(2.37)	(2.63)
Neck	2603	3987	4181	4353	3454	4801	4924	5263	4026	5490	5673	5646
	(4.02)	(5.13)	(5.51)	(5.16)	(4.94)	(6.08)	(6.09)	(5.56)	(5.27)	(5.99)	(6.09)	(5.67)
Back	1474	1710	1792	2030	1720	2036	2091	2548	1915	2405	2490	2414
	(2.28)	(2.20)	(2.36)	(2.41)	(2.46)	(2.58)	(2.59)	(2.69)	(2.51)	(2.63)	(2.67)	(2.42)
Chest/Abd.	858	1016	993	1220	1109	1339	1325	1548	1229	1398	1532	1646
Pelvis	(1.33)	(1.31)	(1.31)	(1.45)	(1.59)	(1.70)	(1.64)	(1.64)	(1.61)	(1.53)	(1.64)	(1.65)

.

Table A.13. Number and percent of covered occupants in head-on accidents with bleeding or serious (A+K) injuries across time periods (data for Figure 2.12).

PENNSYLVANIA

		19	984			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	222	211	232	230	218	219	187	266	212	239	212	243
	(5.06)	(6.19)	(6.30)	(5.98)	(5.38)	(6.38)	(6.39)	(6.74)	(6.50)	(7.56)	(6.38)	(6.37)
Bleeding	410	356	374	410	349	363	283	404	314	334	365	411
	(9.35)	(10.43)	(10.16)	(10.67)	(8.61)	(10.58)	(9.67)	(10.23)	(9.62)	(10.56)	(11.00)	(10.78)

		1984				19	85			1	986	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	154	181	176	203	182	194	210	235	179	142	232	234
	(3.21)	(4.89)	(5.11)	(5.00)	(3.90)	(5.11)	(5.55)	(4.82)	(4.10)	(3.71)	(5.52)	(5.07)
Bleeding	393	369	337	443	382	358	372	423	399	312	400	412
	(8.20)	(9.98)	(9.78)	(10.90)	(8.19)	(9.43)	(9.85)	(8.66)	(9.15)	(8.14)	(9.51)	(8.93)

Table A.14. Number and percent of covered occupants in non-head-on accidents with bleeding or serious (A+K) injuries across time periods (data for Figure 2.13).

PENNSYLVANIA

		19	84			19	85			198	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	908	886	914	1019	784	1043	1025	1068	863	1135	1191	1174
	(2.61)	(2.54)	(2.52)	(2.57)	(2.40)	(2.79)	(2.72)	(2.49)	(2.48)	(2.89)	(2.81)	(2.61)
Bleeding	1928	1915	2052	2148	1687	2054	2100	2230	1843	2153	2275	2388
	(5.55)	(5.50)	(5.67)	(5.41)	(5.16)	(5.49)	(5.59)	(5.20)	(5.28)	(5.49)	(5.38)	(5.31)

		198	84			198	85			198	6	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	439	633	645	668	488	597	634	694	552	666	701	764
	(0.89)	(0.99)	(1.04)	(0.98)	(0.90)	(0.92)	(0.96)	(0.90)	(0.91)	(0.87)	(0.91)	(0.94)
Bleeding	1738	2332	2289	2426	1720	2114	2153	2318	1853	2330	2441	2445
	(3.53)	(3.64)	(3.67)	(3.54)	(3.19)	(3.26)	(3.25)	(3.00)	(3.06)	(3.04)	(3.17)	(3.00)

Table A.15. Number and percent of uninjured covered occupants in head-on and non-head-on accidents across time periods (data for Figure 2.14).

PENNSYLVANIA

		19	84			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Uninjured												
Non-Head-On	28893	28877	30072	32918	27241	30926	31133	35947	28922	32346	34854	37172
Uninjured	(83.21)	(82.89)	(83.11)	(82.98)	(83.40)	(82.73)	(82.85)	(83.75)	(82.89)	(82.46)	(82.44)	(82.58)
Head-On	3336	2514	2751	2766	3063	2496	2146	2889	2386	2272	2349	2706
Uninjured	(76.09)	(73.68)	(74.74)	(71.96)	(75.57)	(72.73)	(73.32)	(73.12)	(73.10)	(71.81)	(70.77)	(70.95)

	1984					19	85			19	86	
	Jan- Mar	Apr- Jun	July- Sept	Oct- Dec	Jan- Mar	Apr- Jun	July- Sept	Oct- Dec	Jan- Mar	Apr- Jun	July- Sept	Oct- Dec
Uninjured												
Non-Head-On	37399	47617	45894	50220	40441	47776	48896	57139	45085	56599	57052	60756
Uninjured	(75.88)	(74.30)	(73.58)	(73.28)	(74.91)	(73.59)	(73.92)	(73.98)	(74.49)	(73.79)	(74.19)	(74.55)
Head-On	3192	2359	2139	2459	3029	2326	2406	3042	2812	2440	2553	2905
Uninjured	(66.58)	(63.77)	(61.84)	(60.51)	(64.97)	(61.28)	(63.68)	(62.31)	(64.48)	(63.67)	(60.73)	(62.95)

Table A.16. Number and percent of occupants in head-on accidents with certain injury locations across time periods - Pennsylvania data (data for Figures 2.15a and 2.16a).

PENNSYLVANIA

		1984				198	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Face	231	210	219	228	230	202	145	239	185	172	191	236
	(5.27)	(6.15)	(5.95)	(5.93)	(5.67)	(5.89)	(4.95)	(6.05)	(5.67)	(5.44)	(5.75)	(6.19)
Head	321	262	272	338	291	264	218	313	265	269	267	339
	(7.32)	(7.68)	(7.39)	(8.79)	(7.18)	(7.69)	(7.45)	(7.92)	(8.12)	(8.50)	(8.04)	(8.89)
Neck	76	60	63	80	73	72	71	85	61	71	88	98
	(1.73)	(1.76)	(1.71)	(2.08)	(1.80)	(2.10)	(2.43)	(2.15)	(1.87)	(2.24)	(2.65)	(2.57)
Back	36	32	26	31	43	27	40	33	39	27	33	35
	(0.82)	(0.94)	(0.71)	(0.81)	(1.06)	(0.79)	(1.37)	(0.84)	(1.19)	(0.82)	(0.99)	(0.92)
Chest/	67	83	68	91	96	76	57	93	78	62	95	74
Stomach	(1.53)	(2.43)	(1.85)	(2.37)	(2.37)	(2.21)	(1.95)	(2.35)	(2.39)	(1.96)	(2.86)	(1.94)

.

Table A.17. Number and percent of occupants in head-on accidents with certain injury locations across time periods - New Jersey data (data for Figures 2.15b and 2.16b).

NEW JERSEY

		1984				1	.985			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location	I											
Head	607	460	464	577	602	465	410	611	579	461	539	543
	(12.66)	(12.44)	(13.46)	(14.20)	(12.91)	(12.25)	(10.85)	(12.52)	(13.28)	(12.03)	(12.82)	(11.77)
Face	233	187	152	234	203	199	195	223	181	152	207	245
	(4.86)	(5.06)	(4.41)	(5.76)	(4.35)	(5.24)	(5.16)	(4.57)	(4.15)	(3.97)	(4.92)	(5.31)
Neck	145	134	156	160	155	163	170	245	159	162	202	224
	(3.02)	(3.62)	(4.53)	(3.94)	(3.32)	(4.29)	(4.50)	(5.02)	(3.65)	(4.23)	(4.80)	(4.85)
Back	99	75	84	92	103	87	87	99	88	83	97	96
	(2.07)	(2.03)	(2.44)	(2.26)	(2.21)	(2.29)	(2.30)	(2.03)	(2.02)	(2.17)	(2.31)	(2.08)
Chest/Abd.	99	96	92	130	134	118	117	166	131	115	151	132
Pelvis	(2.07)	(2.59)	(2.67)	(3.20)	(2.88)	(3.10)	(3.09)	(3.40)	(3.00)	(3.00)	(3.59)	(2.86)

Table A.18. Number and percent of occupants in non-head-on accidents with certain injury locations across time periods - Pennsylvania data (data for Figures 2.17a and 2.18a).

PENNSYLVANIA

		1984				198	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Face	1195	1097	1117	1296	1034	1139	1072	1306	1081	1201	1271	1410
	(3.44)	(3.15)	(3.09)	(3.27)	(3.17)	(3.05)	(2.85)	(3.04)	(3.10)	(3.06)	(3.01)	(3.13)
Head	1646	1707	1702	1971	1601	1810	1783	1946	1691	1836	1922	2216
	(4.74)	(4.90)	(4.70)	(4.97)	(4.90)	(4.84)	(4.74)	(4.53)	(4.85)	(4.68)	(4.55)	(4.92)
Neck	645	725	757	806	665	810	822	875	759	982	996	1061
	(1.86)	(2.08)	(2.09)	(2.03)	(2.04)	(2.17)	(2.19)	(2.04)	(2.18)	(2.50)	(2.36)	(2.36)
Back	398	413	445	467	366	483	485	468	438	501	547	571
	(1.15)	(1.19)	(1.23)	(1.18)	(1.12)	(1.29)	(1.29)	(1.09)	(1.26)	(1.28)	(1.29)	(1.27)
Chest/	460	385	419	474	367	427	412	494	401	454	505	584
Stomach	(1.32)	(1.11)	(1.16)	(1.19)	(1.12)	(1.14)	(1.10)	(1.15)	(1.15)	(1.16)	(1.19)	(1.30)

Table A.19. Number and percent of occupants in non-head-on accidents with certain injury locations across time periods - New Jersey data (data for Figures 2.17b and 2.18b).

		1	984			19	85			19	86	
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Head	4209	5242	5084	6022	4169	4649	4608	5942	4803	5659	5563	6268
	(8.54)	(8.18)	(8.15)	(8.79)	(7.72)	(7.16)	(6.97)	(7.69)	(7.94/)-	(7.38)	(7⁄.23)	(7.69)
Face	1110	1364	1318	1605	1139	1182	1147	1460	1168	1350	1270	1511
	(2.25)	(2.13)	(2.11)	(2.34)	(2.11)	(1.82)	(1.73)	(1.89)	(1.93)	(1.76)	(1.65)	(1.85)
Neck	2250	3662	3832	3980	3030	4392	4512	4744	3563	5058	5164	5085
	(4.57)	(5.71)	(6.14)	(5.81)	(5.61)	(6.76)	(6.82)	(6.14)	(5.89)	(6.59)	(6.72)	(6.24)
Back	1186	1510	1599	1778	1455	1805	1838	2249	1663	2160	2221	2117
	(2.41)	(2.36)	(2.56)	(2.59)	(2.69)	(2.78)	(2.81)	(2.91)	(2.75)	(2.82)	(2.89)	(2.60)
Chest/Abd.	580	742	717	881	756	996	973	1153	853	1077	1126	1264
Pelvis	(1.18)	(3.28)	(1.15)	(1.29)	(1.40)	(1.54)	(1.47)	(1.49)	(1.41)	(1.41)	(1.46)	(1.56)

Table A.20. Number and percent of covered occupants in single vehicle accidents with bleeding and serious (A+K) injuries across time periods (data for Figure 2.19).

PENNSYLVANIA

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	486	449	468	524	375	516	463	548	411	578	613	528
	(4.41)	(5.19)	(5.27)	(4.99)	(4.14)	(5.83)	(5.26)	(4.96)	(4.12)	(6.21)	(6.06)	(4.60)
Bleeding	1039	956	1044	1106	848	955	984	1071	925	1059	1116	1141
	(9.44)	(11.05)	(11.77)	(10.52)	(9.38)	(10.78)	(11.17)	(9.70)	(9.27)	(11.37)	(11.04)	(9.94)

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury									\sim	\rightarrow		
A+K	380	417	385	434	364	381	385	382	328	331	422	369
	(3.60)	(4.25)	(3.85)	(3.73)	(3.29)	(3.76)	(3.59)	(3.12)	(2.92)	(3.05)	(3.59)	(2.81)
Bleeding	1322	1284	1271	1444	1398	1223	1274	1355	1237	1120	1292	1349
	(12.51)	(13.08)	(12.70)	(12.43)	(12.63)	(12.07)	(11.89)	(11.05)	(11.00)	(10.32)	(10.98)	(10.26)

Table A.21. Number and percent of covered occupants in multi-vehicle accidents with bleeding and serious (A+K) injuries across time periods (data for Figure 2.20).

	PENNSYLVANIA											
	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	644	648	678	725	627	746	749	786	664	796	790	889
	(2.29)	(2.19)	(2.18)	(2.20)	(2.27)	(2.33)	(2.36)	(2.19)	(2.35)	(2.40)	(2.22)	(2.38)
Bleeding	1299	1315	1382	1452	1188	1462	1399	1563	1232	1428	1524	1658
	(4.62)	(4.44)	(4.46)	(4.40)	(4.29)	(4.57)	(4.41)	(4.36)	(4.37)	(4.32)	(4.29)	(4.44)

NEW JERSEY

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury												
A+K	606	825	836	886	689	889	871	947	748	820	954	1031
	(1.11)	(1.21)	(1.27)	(1.21)	(1.16)	(1.17)	(1.24)	(1.15)	(1.15)	(1.02)	(1.16)	(1.19)
Bleeding	2166	2722	2653	2908	2147	2516	2576	2789	2295	2687	2893	2916
	(3.97)	(3.99)	(4.01)	(3.98)	(3.63)	(3.64)	(3.66)	(3.37)	(3.51)	(3.32)	(3.54)	(3.36)

Table A.22. Number and percent of uninjured covered occupants in single and multi-vehicle accidents across time periods (data for Figure 2.21).

PENNSYLVANIA

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Crash Type												
Multi-Vehicle	23774	24953	26350	27779	23356	26925	26796	30378	23674	_27764	29855	31154
Uninjured	(84.59)	(84.31)	(85.02)	(84.16)	(84.39)	(84.25)	(84.54)	(84.79)	(84.03)	(83.93)	(84.13)	(83.42)
Single Vehicle	8455	6438	6473	7905	6948	6497	6483	8458	7634	6854	7348	8724
Uninjured	(76.86)	(74.43)	(72.97)	(75.22)	(76.83)	(73.37)	(73.60)	(76.58)	(76.49)	(73.60)	(72.67)	(76.01)

NEW JERSEY

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Crash Type												
Multi-Vehicle	40908	50221	48276	53017	43828	50390	51615	60648	48283	59367	59985	64154
Uninjured	(75.03)	(73.70)	(72.96)	(72.53)	(74.07)	(72.86)	(73.28)	(73.26)	(73.77)	(73.27)	(73.44)	(73.88)
Single Vehicle	6681	6431	6662	7442	7067	6734	7259	8491	7592	7516	7953	9279
Uninjured	(63.21)	(65.50)	(66.56)	(66.64)	(63.85)	(66.46)	(67.74)	(69.27)	(67.52)	(69.23)	(67.59)	(70.60)

.

Table A.23. Number and percent of covered occupants in single vehicle accidents with certain injury locations across time periods - Pennsylvania data (data for Figures 2.22a and 2.23a).

PENNSYLVANIA

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Face	695	577	626	696	549	561	532	680	584	607	655	728
	(6.32)	(6.67)	(7.06)	(6.62)	(6.07)	(6.34)	(6.04)	(6.16)	(5.85)	(6.52)	(6.48)	(6.34)
Head	755	647	670	765	642	689	660	761	698	715	736	752
	(6.86)	(7.48)	(7.55)	(7.28)	(7.10)	(7.78)	(7.49)	(6.89)	(6.99)	(7.68)	(7.28)	(6.55)
Neck	158	115	150	147	138	126	141	152	156	141	171	189
	(1.44)	(1.33)	(1.69)	(1.40)	(1.53)	(1.42)	(1.60)	(1.38)	(1.56)	(1.51)	(1.69)	(1.65)
Back	116	96	137	114	93	133	125	117	110	118	134	133
	(1.05)	(1.11)	(1.54)	(1.08)	(1.03)	(1.50)	(1.42)	(1.06)	(1.10)	(1.27)	(1.33)	(1.16)
Chest/	202	140	149	185	148	155	150	157	159	163	193	200
Stomach	(1.84)	(1.62)	(1.68)	(1.76)	(1.64)	(1.75)	(1.70)	(1.42)	(1.59)	(1.75)	(1.91)	(1.74)

Table A.24. Number and percent of covered occupants in single vehicle accidents with certain injury locations across time periods - New Jersey data (data for Figures 2.22b and 2.23b).

NEW JERSEY

 \sim

1

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location	n											
Head	1503	1164	1180	1438	1475	1152	1177	1347	1313	1124	1239	1315
	(14.22)	(11.86)	(11.79)	(12.38)	(13.33)	(11.37)	(10.98)	(10.99)	(11.68)	(10.35)	(10.53)	(10.01)
Face	856	805	719	933	893	691	726	830	752	698	722	847
	(8.10)	(8.20)	(7.18)	(8.03)	(8.07)	(6.82)	(6.77)	(6.77)	(6.69)	(6.43)	(6.14)	(6.44)
Neck	207	188	193	215	268	244	241	266	293	273	306	334
	(1.96)	(1.91)	(1.93)	(1.85)	(2.42)	(2.41)	(2.25)	(2.17)	(2.61)	(2.51)	(2.60)	(2.54)
Back	192	132	112	160	173	140	146	197	163	166	182	187
	(1.82)	(1.34)	(1.12)	(1.38)	(1.56)	(1.38)	(1.36)	(1.61)	(1.45)	(1.53)	(1.55)	(1.42)
Chest/Abd.	183	181	. 184	212	209	222	229	226	238	203	240	242
Pelvis	(1.73)	(1.85)	(1.84)	(1.83)	(1.89)	(2.19)	(2.14)	(1.85)	(2.11)	(1.87)	(2.04)	(1.84)

.

Table A.25. Number and percent of covered occupants in multi-vehicle accidents with certain injury locations across time periods - Pennsylvania data (data for Figures 2.24a and 2.25a).

PENNSYLVANIA

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Face	731	730	710	828	715	780	685	865	682	766	807	918
	(2.60)	(2.47)	(2.29)	(2.51)	(2.58)	(2.44)	(2.16)	(2.41)	(2.42)	(2.32)	(2.27)	(2.46)
Head	1212	1322	1305	1544	1250	1385	1341	1498	1258	1390	1453	1803
	(4.31)	(4.47)	(4.21)	(4.68)	(4.52)	(4.33)	(4.23)	(4.18)	(4.47))	(4.20)	(4.09)	(4.83)
Neck	563	670	670	739	600	756	752	808	664	912	913	970
	(2.00)	(2.26)	(2.16)	(2.24)	(2.17)	(2.37)	(2.37)	(2.26)	(2.36)	(2.76)	(2.57)	(2.60)
Back	318	349	334	384	316	377	400	384	367	409	446	473
	(1.13)	(1.18)	(1.08)	(1.16)	(1.14)	(1.18)	(1.26)	(1.07)	(1.30)	(1.24)	(1.26)	(1.27)
Chest/	325	328	338	380	315	348	319	430	320	353	407	458
Stomach	(1.16)	(1.11)	(1.09)	(1.15)	(1.14)	(1.09)	(1.01)	(1.20)	(1.14)	(1.07)	(1.15)	(1.23)

 Table A.26. Number and percent of covered occupants in multi-vehicle accidents with certain injury locations across time periods - New Jersey data (data for Figures 2.24b and 2.25b).

	1984				1985				1986			
	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec
Injury Location												
Head	4854	5746	5585	6665	4821	5151	5069	6615	5443	6172	6158	6879
	(8.90)	(8.43)	(8.44)	(9.12)	(8.15)	(7.45)	(7.20)	(7.99)	(8.32)	(7.62)	(7.54)	(7.92)
Face	1368	1516	1480	1863	1373	1402	1370	1717	1371	1523	1498	1786
	(2.51)	(2.29)	(2.24)	(2.55)	(2.32)	(2.03)	(1.95)	(2.07)	(2.09)	(1.88)	(1.83)	(2.06)
Neck	2407	3810	4001	4156	3203	4576	4703	5011	3748	5237	5389	5331
	(4.41)	(5.59)	(6.05)	(5.69)	(5.41)	(6.62)	(6.68)	(6.05)	(5.73)	(6.46)	(6.60)	(6.14)
Back	1295	1592	1690	1883	1566	1907	1959	2363	1762	2251	2334	2241
	(2.38)	(2.34)	(2.55)	(2.58)	(2.65)	(2.76)	(2.78)	(2.85)	(2.69)	(2.78)	(2.86)	(2.58)
Chest/Abd.	684	845	816	1020	906	1124	1104	1331	997	1202	1295	1414
Pelvis	(1.25)	(1.24)	(1.23)	(1.40)	(1.53)	(1.62)	(1.57)	(1.60)	(1.52)	(1.49)	(1.58)	(1.63)

Table A.27. Number and percent of non-belted (NB) and belted (SB) occupants in all 1984 accidents for New Jersey and Pennsylvania by injury severity, injury type, and injury location.

)	108/			
	2	1904	•		
		Overa	11		
	<u>N.</u>	1	PA		
	n (7)	n (%)	n (%)	n (%)	
Injury Severity	NB	SB	NB	<u>SB</u>	
Uninjured	193,115 (71.79)	46,645 (76.66)	77,936 (81.68)	22,878 (89.87)	
Killed	352 (0.13)	23 (0.04)	716 (0.75)	48 (0.19)	
Major Injury/Incap.	4,074 (1.51)	492 (0.81)	2,467 (2.59)	307 (1.21)	
Moderate Injury	20,732 (7.71)	2,843 (4.67)	14,027 (14.70)	2,141 (8.41)	
Complaint of Pain	50,728 (18.86)	10,841 (17.82)			
Unknown Injury			266 (0.28)	84 (0.33)	

. 1984

Overall

.

	NJ		}	<u>PA</u>	
	n (%)	n (%)	۲	n (%)	n (%)
Injury Type	NB	<u>SB</u>		<u>NB</u>	<u>SB</u>
Uninjured	193,115 (71.79)	46,645 (76.66)		77,936 (81.68)	22,878 (89.87)
Amputation	4 (0.00)	1 (0.00)		13 (0.01)	2 (0.01)
Concussion	72 9 (0.27)	83 (0.14)		790 (0.83)	80 (0.31)
Internal	744 (0.28)	97 (0.16)			
Bleeding	14,780 (5.49)	1,718 (2.82)		6,270 (6.57)	660 (2.59)
Contusions/Bruises/ Abrasions	8,595 (3.20)	1,371 (2.25)		2,084 (2.18)	308 (1.21)
Burns	44 (0.02)	5 (0.01)		43 (0.05)	5 (0.02)
Fracture/Dislocation	1,386 (0.52)	165 (0.27)		2,324 (2.44)	287 (1.13)
Complaint of Pain	44,266 (16.46)	9,631 (15.83)		4,953 (5.19)	1,069 (4.20)
None Visible	5,338 (1.98)	1,128 (1.85)		849 (0.89)	134 (0.53)

1984

<u>Overall</u>

	<u>_N</u> .	1	<u>PA</u>	
	n	n	n	n
	(Z)	(Z)	(Z)	(7)
Injury Location	NB	SB	<u>NB</u>	<u>SB</u>
Uninjured	193,115	46,645	77,936	22,878
	(71.79)	(76.66)	(81.68)	(89.87)
Head	25,873	3,771	5,209	595
	(9.62)	(6.20)	(5.46)	(2.34)
Face	9,045	1,107	3,617	351
	(3.36)	(1.82)	(3.79)	(1.38)
Neck	12,646	3,473	1,642	355
	(4.70)	(5.71)	(1.72)	(1.39)
Chest/Stomach/ (Abdomen/Pelvis/ Internal	3,547 (1.31)	894 (1.47)	1,635 (1.72)	320 (1.26)
Back	6,343	1,501	1,067	242
	(2.36)	(2.47)	(1.12)	(0.95)
Arm	6,944	2,476	1,128	182
	(2.58)	(2.43)	(1.18)	(0.71)
Entire Body	2,323	334	1,090	169
	(0.86)	(0.55)	(1.14)	(0.66)
Leg	9,165	1,643	1,637	254
	(3.41)	(2.70)	(1.72)	(1.00)
Unknown			151 (0.16)	35 (0.14)
Other			300 (0.31)	77 (0.30)

Table A.28. Number and percent of non-belted (NB) and belted (SB) occupants in 1984 rollover accidents for New Jersey and Pennsylvania by injury severity, injury type, and injury location.

ς.

1

	۲ ک			19	1984					
		Roll	overs			Others				
	1	NJ	<u>P.</u>	<u>PA</u>		<u>I</u>	PA			
	n (Z)	n (Z)	n (7)	n (7)	n (%)	n (%)	n (7)	n (%)		
Injury Severity	<u>NB</u>	SB	<u>NB</u>	SB	NB	<u>SB</u>	NB	<u>SB</u>		
Uninjured	607 (46.95)	128 (55.41)	2,847 (60.32)	869 (76.90)	192,740 (71.93)	46,581 (76.76)	49,211 (81.08)	14,005 (90.96)		
Killed	6 (0.46)	1 (0.43)	162 (3.43)	10 (0.8 8)	346 (0.13)	22 (0.04)	414 (0.68)	20 (0.13)		
Major Injury/Incap.	76 (5.88)	10 (4.33)	322 (6.82)	38 (3.36)	3,999 (1.49)	482 (0.79)	2,633 (2.69)	165 (1.07)		
Moderate Injury	255 (19.72)	30 (12.99)	1,380 (29.24)	206 (18.23)	20,483 (7.64)	2,816 (4.64)	9,289 (15.30)	1,173 (7.62)		
Complaint of Pain	349 (26.99)	62 (26.84)			50,404 (18.81)	10,784 (17.77)				
Unknown Injury			9 (0.19)	7 (0.62)			150 (0.25)	34 (0.22)		

Table A.28 (Con't)

1984

		Rollo	overs		Others				
	Ā	1]	<u>P</u> /	<u>A</u>	NJ	•	PA		
	n	n	n	n	n	n	n	n	
	(7)	(%)	(%)	(Z)	(%)	(%)	(%)	(%)	
Injury Type	<u>NB</u>	<u>SB</u>	<u>NB</u>	<u>SB</u>	NB	SB	NB	<u>SB</u>	
Uninjured	607	128	2,847	869	192,740	46,581	49,211	14,005	
	(46.95)	(55.41)	(60.32)	(76.90)	(71.93)	(76.76)	(81.08)	(90.96)	
Amputation	0	0	8	0	4	1	4	1	
	(0.00)	(0.00)	(0.17)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	
Concussion	8	1	87	12	721	82	529	42	
	(0.62)	(0.43)	(1.84)	(1.06)	(0.27)	(0.14)	(0.87)	(0.27)	
Internal	18 (1.39)	1 (0.43)			726 (0.27)	96 (0.16)			
Bleeding	186	20	647	76	14,598	1,702	4,495	416	
	(14.39)	(8.66)	(13.71)	(6.73)	(5.45)	(2.80)	(7.41)	(2.70)	
Contusions/Bruises/	123	18	259	39	8,476	1,353	1,408	172	
Abrasions	(9.51)	(7.79)	(5.49)	(3.45)	(3.16)	(2.23)	(2.32)	(1.12)	
Burns	2	0	12	0	42	5	22	2	
	(0.15)	(0.00)	(0.25)	(0.00)	(0.02)	(0.01)	(0.04)	(0.01)	
Fracture/Dislocation	25	5	329	34	1,362	160	1,540	163	
	(1.93)	(2.16)	(6.97)	(3.01)	(0.51)	(0.26)	(2.54)	(1.06)	
Complaint of Pain	301	52	425	85	43,983	9,583	2,852	509	
	(23.28)	(22.51)	(9.00)	(7.52)	(16.41)	(15.79)	(4.70)	(3.31)	
None Visible	23	6	95	12	5,320	1,122	552	65	
	(1.78)	(2.60)	(2.01)	(1.06)	(1.99)	(1.85)	(0.91)	(0.42)	

Table A.28 (Con't)

1984

Rollovers

Χ.

 \rangle

Ł

<u>Others</u>

	NJ		<u>PA</u>	<u>N.</u>	NJ		PA	
	n	n n	n	n	n	n	n	
	(%) (7.) (7.)	(%)	(%)	(Z)	(Z)	(%)	
Injury Location	NB	<u>SB NB</u>	<u>SB</u>	NB	<u>SB</u>	<u>NB</u>	<u>SB</u>	
Uninjured	607	128 2,847	7 869	192,740	46,581	49,211	14,005	
	(46.95) (55	.41) (60.32	2) (76.90)	(71.93)	(76.76)	(81.08)	(90.96)	
Head	185	22 529	75	25,702	3,752	3,511	325	
	(14.31) (9	.52) (11.21) (6.64)	(9.59)	(6.18)	(5.78)	(2.11)	
Face	54	3 257	25	8,995	1,105	2,785	231	
	(4.18)(1	.30) (5.44	(2.21)	(3.36)	(1.82)	(4.59)	(1.50)	
Neck	51	9 132	2 24	12,601	3,467	832	148	
	(3.94)(3	.90) (2.80	3) (2.12)	(4.70)	(5.71)	(1.37)	(0.96)	
Chest/Stomach/ Abdomen/Pelvis/ Internal	32 (2.48)(3	8 179 .47) (3.80) 17)) (1.50)	3,516 (1.31)	886 (1.46)	1,112 (1.83)	193 (1.25)	
Back	62	7 171	31	6,282	1,494	559	106	
	(4.80)(3	.03) (3.62	2) (2.74)	(2.34)	(2.46)	(0.92)	(0.69)	
Arm	173	28 207	33	6,773	1,449	651	92	
	(13.38) (12	.12) (4.39	(2.92)	(2.53)	(2.39)	(1.07)	(0.60)	
Entire Body	59	8 183	27	2,264	326	678	88	
	(4.56)(3	.46) (3.88	3) (2.39)	(0.84)	(0.54)	(1.12)	(0.57)	
Leg	70 (5.41)(7	18 165 .79) (3.50) (1.68)	9,099 (3.40)	1,625 (2.68)	1,076 (1.77)	146 (0.95)	
Unknown		11 (0.23	3) (0.27)			82 (0.14)	23 (0.15)	
Other		39 (0.83	7			200 (0.33)	40 (0.26)	

Table A.29. Number and percent of non-belted (NB) and belted (SB) occupants in 1984 head-on accidents for New Jersey and Pennsylvania by injury severity, injury type, and injury location.

	1984 <								
		<u>Head-</u>	Ons			Others			
	<u>NJ</u>		PA		N	NJ		L	
	n (%)	n (%)	n (%)	n (Z)	n (%)	n (%)	n (%)	n (%)	
Injury Severity	NB	<u>SB</u>	NB	<u>SB</u>	<u>NB</u>	<u>SB</u>	NB	SB	
Uninjured	9,081 (63.26)	2,068 (68.86)	6,433 (73.13)	1,789 (83.60)	156,294 (73.59)	38,090 (77.14)	68,719 (82.03)	20,145 (90.08)	
Killed	81 (0.56)	7 (0.23)	140 (1.59)	10 (0.47)	109 (0.05)	11 (0.02)	574 (0.69)	38 (0.17)	
Major Injury/Incap.	570 (3.97)	80 (2.66)	434 (4.93)	73 (3.41)	2,051 (0.97)	291 (0.59)	2,026 (2.42)	234 (1.05)	
Moderate Injury	1,793 (12.49)	280 (9.32)	1,774 (20.17)	259 (12.10)	12,612 (5.94)	1,864 (3.77)	12,206 (14.57)	1,873 (8.38)	
Complaint of Pain	2,831 (19.72)	568 (18.91)			41,329 (19.46)	9,123 (18.48)			
Unknown Injury			16 (0.18)	9 (0.42)			245 (0.29)	74 (0.33)	

Table A.29 (Con't)

1984

	Head-Ons				Others				
	NJ		PA		Ņ	IJ	<u>pa</u> >		
	n	n	n	n	n	n	n	n	
	(%)	(%)	(%)	(Z)	(7)	(7)	(%)	(7)	
Injury Type	NB	SB	NB	<u>SB</u>	<u>NB</u>	<u>SB</u>	<u>NB</u>	<u>SB</u>	
Uninjured	9,081	2,068	6,433	1,789	156,294	38,090	68,719	20,145	
	(63.26)	(68.86)	(73.13)	(83.60)	(73.59)	(77.14)	(82.03)	(90.08)	
Amputation	0	0	1	0	2	0	12	2	
	(0.00)	(0.00)	(0.01)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	
Concussion	64	10	102	11	446	52	685	69	
	(0.45)	(0.33)	(1.16)	(0.51)	(0.21)	(0.11)	(0.82)	(0.31)	
Internal	122 (0.85)	17 (0.57)			335 (0.16)	60 (0.12)			
Bleeding	1,411	180	977	115	8,150	1,019	5,270	540	
	(9.83)	(5.99)	(11.11)	(5.37)	(8.84)	(2.06)	(6.29)	(2.41)	
Contusions/Bruises/	685	111	282	37	5,579	936	1,796	271	
Abrasions	(4.77)	(3.70)	(3.21)	(1.73)	(2.63)	(1.90)	(2.14)	(1.21)	
Burns	3	0	7	1	25	4	36	4	
	(0.02)	(0.00)	(0.08)	(0.05)	(0.01)	(0.01)	(0.04)	(0.02)	
Broken Bones	183	34	374	60	642	84	1,941	225	
	(1.27)	(1.13)	(4.25)	(2.80)	(0.30)	(0.17)	(2.32)	(1.01)	
Complaint of Pain	2,499	535	500	105	36,491	8,159	4,437	963	
	(17.41)	(17.82)	(5.68)	(4.91)	(17.18)	(16.52)	(5.30)	(4.31)	
None Visible	308	48	109	17	4,431	975	736	115	
	(2.15)	(1.60)	(1.24)	(0.79)	(2.09)	(1.97)	(0.88)	(0.51)	

Υ.

Table A.29 (Con't)

 $\mathbf{X}_{\mathbf{r}}$

	<u>Head-Ons</u>				Others				
	NJ	,) <u>PA</u>		<u>N</u>	J.	Ē	<u>A</u>	
	n	n <	n	n	n	n	n	n	
	(7)	(%)	(7)	(7)	(%)	(7)	(%)	(%)	
Injury Location	<u>NB</u>	<u>SB</u>	NB	<u>SB</u>	<u>NB</u>	<u>SB</u>	<u>NB</u>	SB	
Uninjured	9,081	2,068	6,433	1,789	156,294	38,090	68,719	20,145	
	(63.26)	(68.86)	(73.13)	(83.60)	(73.59)	(77.14)	(82.03)	(90.08)	
Head	1,934	260	729	77	18,682	2,881	4,464	517	
	(13.47)	(8.66)	(8.29)	(3.60)	(8.80)	(5.83)	(5.33)	(2.31)	
Face	754	103	540	63	5,070	692	3,063	284	
	(5.25)	(3.43)	(6.14)	(2.94)	(2.39)	(1.40)	(3.66)	(1.27)	
Neck	491	125	138	25	11,316	3,168	1,499	329	
	(3.42)	(4.16)	(1.57)	(1.17)	(5.33)	(6.42)	(1.79)	(1.47)	
Chest/Stomach/ (Abdomen/Pelvis/ Internal	341 (2.37)	95 (3.16)	219 (2.49)	57 (2.66)	2,478 (1.17)	654 (1.32)	1,411 (1.68)	263 (1.18)	
Back	320	65	80	19	5,358	1,315	985	223	
	(2.23)	(2.16)	(0.91)	(0.89)	(2.52)	(2.66)	(1.18)	(1.00)	
Arm	454	114	136	23	4,936	1,089	987	155	
	(3.16)	(3.80)	(1.55)	(1.07)	(2.32)	(2.21)	(1.18)	(0.69)	
Leg	742	135	286	48	6,746	1,241	1,344	206	
	(5.17)	(4.50)	(3.25)	(2.24)	(3.18)	(2.51)	(1.60)	(0.92)	
Entire Body	239	38	181	24	1,515	249	905	145	
	(1.66)	(1.27)	(2.06)	(1.12)	(0.71)	(0.50)	(1.08)	(0.65)	
Other			36 (0.41)	10 (0.47)			261 (0.31)	67 (0.30)	
Unknown			19 (0.22)	5 (0.23)			132 (0.16)	30 (0.13)	

Table A.30. Number and percent of non-belted (NB) and belted (SB) occupants in 1984 single and multi-vehicle accidents for New Jersey and Pennsylvania by injury severity, injury type, and injury location.

ς.

				198	4 ^K					
		Sin	ngle			Multi-Vehicle				
	NJ	<u>I</u>	<u>P/</u>	<u>PA NJ</u>		-	PA	PA		
	n (%)	n (%)	n (%)	n (%)	n (7)	n (%)	n (%)	n (%)		
Injury Severity	<u>NB</u>	<u>SB</u>	<u>NB</u>	<u>SB</u>	NB	SB	<u>NB</u>	<u>SB</u>		
Uninjured	24,538 (63.90)	5,780 (45.66)	18,430 (71.54)	5,657 (88.32)	168,809 (73.12)	40,929 (76.82)	59,518 (85.54)	17,222 (90.39)		
Killed	153 (0.40)	5 (0.07)	334 (1.30)	17 (0.27)	199 (0.09)	18 (0.03)	382 (0.55)	31 (0.16)		
Major Injury/Incap.	2,402 (3.65)	116 (1.52)	1,166 (4.53)	94 (1.47)	2,673 (1.16)	376 (0.71)	1,301 (1.87)	213 (1.12)		
Moderate Injury	6,154 (16.03)	674 (8.82)	5,760 (22.36)	620 (9.68)	14,584 (6.32)	2,172 (4.08)	8,269 (11.87)	1,521 (7.98)		
Complaint of Pain	6,152 (16.02)	1,064 (13.93)			44,601 (19.32)	9,782 (18.36)				
Unknown Injury	~ -		71 (0.28)	17 (0.27)			195 (0.28)	67 (0.35)		

```
1984
```

		511	ngle		<u>Multi-Vehicle</u>			
\rangle	NJ		PA		NJ		PA	
<	n	n	n	n	n	n	n	n
	(%)	(Z)	(%)	(%)	(Z)	(%)	(%)	(%)
Injury Type	NB	SB	NB	SB	<u>NB</u>	<u>SB</u>	NB	<u>SB</u>
Uninjured	24,538	5,780	18,430	5,657	168,809	40,929	59,518	17,222
	(63.90)	(75.66)	(71.54)	(88.32)	(73.12)	(76.82)	(85.43)	(90.34)
Amputation	2	1	9	1	2	0	4	1
	(0.01)	(0.01)	(0.03)	(0.02)	(0.00)	(0.00)	(0.01)	(0.01)
Concussion	216	20	349	33	513	63	441	47
	(0.56)	(0.26)	(1.35)	(0.52)	(0.22)	(0.12)	(0.63)	(0.25)
Internal	283 (0.74)	20 (0.26)			461 (0.20)	77 (0.14)		
Bleeding	5,086	507	3,012	246	9,698	1,215	3,259	414
	(13.25)	(6.64)	(11.69)	(3.84)	(4.20)	(2.28)	(4.68)	(2.17)
Contusions/Bruises/	2,250	307	931	104	6,349	1,064	1,153	204
Abrasions	(5.86)	(4.02)	(3.61)	(1.62)	(2.75)	(2.00)	(1.66)	(1.07)
Burns	15	1	21	1	29	4	22	4
	(0.04)	(0.01)	(0.08)	(0.02)	(9.01)	(0.01)	(0.03)	(0.02)
Fracture/Dislocation	541	45	1,131	94	864	120	1,193	193
	(1.41)	(0.59)	(4.39)	(1.47)	(0.37)	(0.23)	(1.71)	(1.01)
Complaint of Pain	4,904	868	1,503	234	39,380	8,767	3,451	835
	(12.77)	(11.36)	(5.83)	(3.65)	(17.06)	(16.46)	(4.95)	(4.38)
None Visible	564 (1,47)	90 (1.18)	323	25 (0,39)	4,779 (2,07)	1,038	526 (0,76)	109
Table A.30 (Con't)

1984

Single

) <u>nj</u>		<u>P/</u>	Ā	<u>NJ</u>	-	PA		
	n<	n	n	n	n	n	n	n	
	(%)	(%)	(7)	(%)	(%)	(7)	(%)	(%)	
Injury Location	NB	<u>SB</u>	NB	SB	NB	<u>SB</u>	NB	SB	
Uninjured	24,538	5,780	18,430	5,657	168,809	40,929	59,518	17,222	
	(63.90)	(75.66)	(71.54)	(88.32)	(73.12)	(76.82)	(85.43)	(90.39)	
Head	5,050	596	2,146	201	20,837	3,178	3,063	394	
	(13.15)	(7.80)	(8.33)	(3.14)	(9.03)	(5.97)	(4.40)	(2.07)	
Face	3,140	300	130	130	5,909	808	1,791	221	
	(8.18)	(3.93)	(2.03)	(2.03)	(2.56)	(1.52)	(2.57)	(1.16)	
Neck	273	160	442	66	11,909	3,316	1,200	289	
	(1.93)	(2.09)	(1.72)	(1.03)	(5.16)	(6.22)	(1.72)	(1.52)	
Chest/Stomach/ (Abdomen/Pelvis/ Internal	699 (1.82)	135 (1.77)	699 (2.71)	63 (0.91)	2,849 (1.24)	759 (1.42)	937 (1.35)	257 (1.35)	
Back	606	107	413	68	5,738	1,394	654	174	
	(1.58)	(1.40)	(1.60)	(1.06)	(2.49)	(2.62)	(0.94)	(0.91)	
Arm	1,497	259	510	67	5,449	1,218	618	115	
	(3.90)	(3.39)	(1.98)	(1.05)	(2.36)	(2.29)	(0.89)	(0.60)	
Entire Body	539	45	454	58)	1,784	289	636	111	
	(1.40)	(0.59)	(1.76)	(0.91)	(0.77)	(0.54)	(0.91)	(0.58)	
Leg	1,587	257	671	67	7,582	1,386	966	187	
	(4.13)	(3.36)	(2.60)	(1.05)	(3.28)	(2.60)	(1.39)	(0.98)	
Unknown			48 (0.19)	10 (0.16)			103 (0.15)	25 (0.13)	
Other			121 (0.47)	18 (0.28)			179 (0.26)	59 (0.31)	

Table A.31. Number and percent of non-belted (NB) and belted (SB) occupants in 1984 accidents for New Jersey and Pennsylvania by ejection, injury severity, injury type, and injury location.

	1984											
		<u>Not Ej</u>	ected	Ejected								
	<u>NJ</u>		PA		N	U	PA	L				
	n (7)	n (%)	n (%)	n (%)	n (%)	n (%)	n (%)	n (7)				
Injury Severity	NB	SB	<u>NB</u>	<u>SB</u>	NB	<u>SB</u>	<u>NB</u>	<u>SB</u>				
Uninjured	192,377 (71.99)	46,438 (76.70)	77,906 (82.66)	22,872 (90.05)	333 (27.07)	56 (44.80)	25 (2.71)	0 (0.00)				
Killed	258 (0.10)	20 (0.03)	528 (0.56)	47 (0.19)	93 (7.56)	3 (2.40)	184 (19.91)	1 (3.33)				
Major Injury/Incap.	3,827 (1.43)	483 (0.80)	2,127 (2.26)	299 (1.18)	237 (19.27)	7 (5.60)	298 (32.25)	8 (26.67)				
Moderate Injury	20,402 (7.63)	2,824 (4.66)	13,426 (14.25)	2,101 (8.27)	294 (23.90)	17 (13.60)	415 (44.91)	21 (70.00)				
Complaint of Pain	50,380 (18.85)	10,780 (17.80)			273 (22.20)	42 (33.60)						
Unknown Injury			257 (0.27)	79 (0.31)			2 (0.22)	0 (0.00)				

Table A.31 (Con't)

Not Ejected

Ejected

	NJ		<u>PA</u>		Ī	IJ	PA		
	n	n	n	n	n	n	n	n	
	(Z)	(%)	(%)	(%)	(%)	(7)	(%)	(%)	
Injury Type	<u>NB</u>	SB	<u>NB</u>	<u>SB</u>	<u>NB</u>	SB	<u>NB</u>	<u>SB</u>	
Uninjured	102,377	46,438	77,906	22,872	333	56	25	0	
	(71.99)	(76.70)	(82.66)	(90.05)	(27.07)	(44.80)	(2.71)	(0.00)	
Amputation	4	1	10	2	0	0	3	0	
	(0.00)	(0.00	(0.01)	(0.01)	(0.00)	(0.00)	(0.32)	(0.00)	
Concussion	69 9	83	704	79	28	0	77	1	
	(0.26)	(0.14)	(0.75)	(0.31)	(2.28)	(0.00)	(8.33)	(3.33)	
Internal	651 (0.24)	93 (0.15)			92 (7.48)	4 (3.20)			
Bleeding	14,459	1,705	5,868	646	288	15	299	7	
	(5.41)	(2.82)	(6.23)	(2.54)	(23.41)	(12.00)	(32.36)	(2 3. 33)	
Contusions/Bruises/	8,450	1,362	1,969	302	131	8	80	3	
Abrasions	(3.16)	(2.25)	(2.09)	(1.19)	(10.65)	(6.40)	(8.66)	(10.00)	
Burns	44	5	37	5	0	0	5	0	
	(0.02)	(0.01)	(0.04)	(0.02)	(0.00)	(0.00)	(0.54)	(0.00)	
Broken Bones	1,315	162	2,088	278	72	3	214	8	
	(0.49)	(0.27)	(2.22)	(1.09)	(5.85)	(2.40)	(23.16)	(26.67)	
Complaint of Pain	43,935	9,576	4,778	1,054	266	35	121	8	
	(16.44)	(15.82)	(5.07)	(4.15)	(21.63)	(28.00)	(13.10)	(26.67)	
None Visible	5,310	1,120	884	160	20	4	100	3	
	(1.99)	(1.85)	(0.94)	(0.63)	(1.63)	(3.20)	(10.82)	(10.00)	

Table A.31 (Con't)

1984	

Σ.

		<u>Not Ej</u>	ected	Ejected						
	NJ		PA		N	L)	Ē	A		
	n	n	n	n	n	< <u>n</u>	n	n		
	(%)	(%)	(%)	(%)	(7)	(%)	(%)	(%)		
Injury Location	<u>NB</u>	<u>SB</u>	<u>NB</u>	<u>SB</u>	<u>NB</u>	<u>SB</u>	<u>NB</u>	<u>SB</u>		
Uninjured	192,377	46,438	77,906	22,872	333	56	25	0		
	(72.99)	(76.70)	(82.66)	(90.05)	(27.07)	(44.80)	(2.71)	(0.00)		
Head	25,508	3,740	4,827	588	318	27	311	4		
	(9.54)	(6.18)	(5.12)	(2.32)	(25.85)	(21.60)	(33.66)	(13.33)		
Face	8,956	1,104	3,459	342	70	3	96	4		
	(3.35)	(1.82)	(3.67)	(1.35)	(5.69)	(2.40)	(10.39)	(13.33)		
Neck	12,562	3,456	1,578	352	60	14	51	1		
	(4.70)	(5.71)	(1.12)	(1.39)	(4.88)	(11.20)	(5.52)	(3.33)		
Chest/Stomach/ Abdomen/Pelvis/ Internal	3,485 (1.31)	889 (1.47)	1,517 (1.61)	316 (1.23)	58 (4.71)	3 (2.40)	101 (10.93)	1 (3.33)		
Back	6,266	1,492	995	240	69	6	62	2		
	(2.34)	(2.46)	(1.06)	(0.94)	(5.61)	(4.80	(6.71)	(6.67)		
Arm	6,858	1,468	1,058	178	79	4	50	2		
	(2.57)	(2.42)	(1.12)	(0.70)	(6.42)	(3.20)	(5.41)	(6.67)		
Leg	9,048	1,634	1,540	248	107	4	84	6		
	(3.39)	(2.70)	(1.63)	(0.97)	(8.70)	(3.20)	(9.09)	(20.00)		
Entire Body	2,184	324	940	157	136	8	131	10		
	(0.82)	(0.54)	(1.00)	(0.62)	(11.06)	(6.40)	(14.18)	(33.33)		
Other			284 (0.30)	76 (0.30)			9 (0.97)	0 (0.00)		
Unknown			140 (0.15)	31 (0.12)			4 (0.43)	0 (0.00)		

Table A.32. Number and percent of non-belted (NB) and belted (SB) occupants in 1984 accidents by occupant gender, injury severity, injury type, and injury location. 1

)

			Κ.							
		Mal	e		Female					
	<u>NJ</u>		<u>PA</u>		N	IJ	PA			
	n (%)	n (%)	n (7)	n (Z)	n (%)	n (%)	n (%)	n (%)		
Injury Severity	<u>NB</u>	SB	<u>NB</u>	SB	<u>NB</u>	SB	NB	<u>SB</u>		
Uninjured	120,947 (76.68)	27,404 (80.81)	51,013 (84.17)	14,466 (91.79)	72,168 (64.86)	19,151 (71.40)	26,923 (77.35)	8,142 (86.74)		
Killed	221 (0.14)	12 (0.04)	473 (0.78)	28 (0.18)	131 (0.12)	11 (0.04)	243 (0.70)	20 (0.21)		
Major Injury/Incap.	2,189 (1.39)	249 (0.73)	1,476 (2.44)	161 (1.02)	1,885 (1.69)	243 (0.91)	991 (2.85)	146 (1.51)		
Moderate Injury	11,251 (7.13)	1,435 (4.22)	7,499 (12.37)	1,060 (6.73)	9,481 (8.52)	1,408 (5.25)	6,528 (18.76)	1,081 (11.15)		
Complaint of Pain	23,124 (14.66)	4,833 (14.21)			27,604 (24.81)	6,008 (22.40)				
Unknown Injury			145 (0.24)	45 (0.29)			121 (0.35)	39 (0.40)		

1984

 $\mathbf{X}_{\mathbf{y}}$

		<u>Mal</u>	e		Female						
	<u>NJ</u>)	<u>PA</u>		N	IJ	PA	<u>.</u>			
	n	n	n	n	n	n	n	n			
	(%)	(%) <	(%)	(%)	(%)	(%)	(7)	(%)			
Injury Type	<u>NB</u>	SB	NB	<u>SB</u>	NB	<u>SB</u>	<u>NB</u>	<u>SB</u>			
Uninjured	120,947	27,494	51,013	14,466	72,168	19,151	26,923	8,412			
	(76.68)	(80.81)	(84.17)	(91.79)	(64.86)	(71.40)	(77.35)	(86.74)			
Amputation	1	1	9	2	3	0	4	0			
	(0.00)	(0.00)	(0.01)	(0.01)	(0.00)	(0.00)	(0.01)	(0.00)			
Concussion	372	41	404	39	357	42	386	41			
	(0.24)	(0.12)	(0.67)	(0.25)	(0.32)	(0.16)	(1.11)	(0.42)			
Internal	444 (0.28)	51 (0.15)			300 (0.27)	46 (0.17)					
Bleeding	8,902	1,004	3,935	404	5,878	714	2,335	256			
	(5.64)	(2.95)	(6.49)	(2.56)	(2.28)	(2.66)	(6.71)	(2.64)			
Contusions/Bruises/	4,261	665	1,064	150	4,334	706	1,020	158			
Abrasions	(2.70)	(1.95)	(1.76)	(0.95)	(3.90)	(2.63)	(2.93)	(1.63)			
Burns	29	2	23	2	15	3	20	3			
	(0.02)	(0.01)	(0.04)	(0.01)	(0.01)	(0.01)	(0.06)	(0.03)			
Broken Bon es	717	71	1,261	146	669	94	1,063	141			
	(0.45)	(0.21)	(2.08)	(0.93)	(0.60)	(0.35)	(3.05)	(1.45)			
Complaint of Pain	19,610	4,209	2,322	464	24,656	5,422	2,631	605			
	(12.43)	(12.37)	(3.83)	(2.94)	(22.16)	(20.22)	(7.56)	(6.24)			
None Visible	2,449	485	491	66	2,889	643	68	2,889			
	(1.55)	(1.43)	(0.81)	(0.42)	(2.60)	(2.40)	(0.70)	(2.60)			

Table A.32 (Con't) Υ.

Male

		Mal	e		Female						
	<u>NJ</u>		<u>PA</u>	/) <u>P</u>	IJ	<u> </u>	PA			
	n	n	n	n <	n	n	n	n			
	(%)	(%)	(%)	(7)	(%)	(7)	(%)	(%)			
Injury Location	<u>NB</u>	SB	NB	SB	NB	<u>SB</u>	NB	SB			
Uninjured	120,947	27,494	51,013	14,466	72,168	19,151	26,923	8,412			
	(76.68)	(80.81)	(84.17)	(91.79)	(64.86)	(71.40)	(77.35)	(86.74)			
Head	12,518	1,700	2,935	328	13,355	2,071	2,274	267			
	(7.94)	(5.00)	(4.84)	(2.08)	(12.00)	(7.72)	(6.53)	(2.75)			
Face	4,755	529	2,131	201	4,290	578	1,486	150			
	(3.01)	(1.55)	(3.52)	(1.28)	(3.86)	(2.16)	(4.27)	(1.55)			
Neck	5,524	1,502	715	133	7,122	1,971	927	222			
	(3.50)	(4.41)	(1.18)	(0.84)	(6.40)	(7.35)	(2.66)	(2.29)			
Chest/Stomach/ Abdomen/Pelvis/ Internal	1,786 (1.14)	375 (1.10)	1,014 (1.67)	165 (0.99)	1,761 (1.58)	519 (1.93)	621 (1.78)	165 (1.70)			
Back	3,315	762	555	112	3,028	739	512	130			
	(2.10)	(2.24)	(0.92)	(0.71)	(2.72)	(2.76)	(1.47)	(1.34)			
Arm	3,645	775	636	95	3,299	701	492	87			
	(2.31)	(2.28)	(1.05)	(0.60)	(2.96)	(2.61)	(1.41)	(0.90)			
Leg	4,085	746	760	132	5,080	897	877	122			
	(2.59)	(2.19)	(1.25)	(0.84)	(4.57)	(3.34)	(2.52)	(1.26)			
Entire Body	1,157	140	600	79	1,166	194	490	90			
	(0.73)	(0.41)	(0.99)	(0.50)	(1.05)	(0.72)	(1.41)	(0.93)			
Other			162 (0.27)	41 (0.26)			138 (0.40)	36 (0.37)			
Unknown			85 (0.14)	18 (0.11)			66 (0.19)	17 (0.18)			

Σ.

)

Ł

Data for Indiana

•

Table B.1. Number and percent of drivers in all accidents who were killed, injuredor not injured across time periods (data for Figure 2.26).

							INDI	ANA							
		1	985			1986				1987				1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Severity															
Killed	89	97	86	136	71	99	120	109	84	117	98	111	91	102	116
	(0.18)	(0.20)	(0.18)	(0.23)	(0.13)	(0.16)	(0.20)	(0.16)	(0.14)	(0.19)	(0.16)	(0.16)	(0.14)	(0.17)	(0.19)
Injured	6613	7035	7322	8676	6709	7808	8183	8994	7283	8250	7769	8662	7816	7821	8059
	(13.28)	(14.76)	(15.34)	(14.42)	(12.25)	(12.92)	(13.46)	(13.13)	(12.50)	(13.52)	(12.89)	(12.20)	(12.24)	(12.82)	(13.27)
Not Injured	43113	40529	40315	51372	48006	52506	52514	59416	50877	52650	52417	62210	55940	53090	52578
	(86.55)	(85.04)	(84.48)	(85.36)	(87.62)	(86.91)	(86.35)	(86.71)	(87.35)	(86.29)	(86.95)	(87.64)	(87.62)	(87.01)	(86.54)

Table B.2. Number and percent of drivers in all accidents with certain injury types across time periods (data for Figures 2.27 and 2.28).

INDIANA

	1985			1986				1987				1988			
ln jury Type	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Bleeding	1735	1892	1932	2251	1764	2044	2115	2303	1876	1978	1877	2050	1857	1782	1950
	(3.48)	(3.97)	(4.05)	(3.74)	(3.22)	(3.38)	(3.48)	(3.36)	(3.22)	(3.24)	(3.11)	(2.89)	(2.91)	(2.92)	(3.21)
Fracture/	318	330	414	415	307	345	391	411	313	384	376	393	355	379	326
Dislocation	(0.64)	(0.69)	(0.87)	(0.69)	(0.56)	(0.57)	(0.64)	(0.60)	(0.54)	(0.63)	(0.62)	(0.55)	(0.56)	(0.62)	(0.54)
Complaint	3183	3296	3377	4382	3324	3843	4051	4679	3740	4359	4146	4815	4311	4200	4314
of Pain	(6.39)	(6.92)	(7.08)	(7.28)	(6.07)	(6.36)	(6.66)	(6.83)	(6.42)	(7.14)	(6.88)	(6.78)	(6.75)	(6.88)	(7.10)
Internal	169	191	222	210	16 8	186	224	209	188	203	217	211	184	188	234
	(0.34)	(0.40)	(0.40)	(0.35)	(0.31)	(0.31)	(0.37)	(0.31)	(0.32)	(0.33)	(0.36)	(0.30)	(0.29)	(0.31)	(0.39)
Abrasion	516	621	681	598	421	641	677	562	472	614	563	498	441	590	588
	(1.04)	(1.30)	(1.43)	(0.99)	(0.77)	(1.06)	(1.11)	(0.82)	(0.81)	(1.01)	(0.93)	(0.70)	(0.69)	(0.97)	(0.97)
Contusion/	736	743	753	895	748	782	788	874	724	786	630	747	715	736	707
Bruise	(1.48)	(1.56)	(1.58)	(1.49)	(1.37)	(1.29)	(1.30)	(1.28)	(1.24)	(1.29)	(1.05)	(1.05)	(1.12)	(1.21)	(1.16)

Table B.3. Number and percent of drivers in all accidents with certain injury locations across time periods (data for Figures 2.29 and 2.30).

INDIANA

		1	985			1986				1987				1988		
Injury Location	Jan- Mar	Apr- Jun	July- Sept	Oct- Dec	Jan- Mar	Apr- Jun	July- Sept	Oct- Dec	Jan- Mar	Apr- Jun	_ July- Sept	Oct- Dec	Jan- Mar	Apr- Jun	July- Sept	
Face	1233	1156	1139	1530	1221	1271	1282	1603	1274	1139	1092	1467	1262	1101	1187	
	(2.48)	(2.43)	(2.39)	(2.54)	(2.23)	(2.10)	(2.11)	(2.34)	(2.19)	(1.87)	(1.81)	(2.07)	(1.98)	(1.80)	(1.95)	
Head	2111	2014	2028	2694	2110	2267	2280	2606	2264	2331	1930	2345	2299	2057	2011	
	(4.24)	(4.23)	(4.25)	(4.48)	(3.85)	(3.75)	(3.75)	(3.80)	(3.89)	(3.82)	(3.20)	(3.30)	(3.60)	(3.37)	(3.31)	
Neck	916	1036	1122	1310	1003	1318	1404	1494	1088	1495	1521	1607	1280	1435	1577	
	(1.84)	(2.17)	(2.35)	(2.18)	(1.83)	(2.18)	(2.31)	(2.18)	(1.87)	(2.45)	(2.52)	(2.26)	(2.00)	(2.35)	(2.60)	
Back	423	446	523	587	430	501	546	628	475	586	547	587	514	529	578	
	(0.85)	(0.94)	(1.10)	(0.98)	(0.78)	(0.83)	(0.90)	(0.92)	(0.82)	(0.96)	(0.91)	(0.83)	(0.81)	(0.87)	(0.95)	
Chest/Abd.	473	498	567	651	496	562	640	717	593	634	721	759	710	725	764	
Pelvis	(0.95)	(1.04)	(1.19)	(1.08)	(0.91)	(0.93)	(1.05)	(1.05)	(1.02)	(1.04)	(1.20)	(1.07)	(1.11)	(1.19)	(1.26)	
Shoulder/	223	356	352	322	250	390	388	343	266	399	425	341	318	401	445	
Upper Arm	(0.45)	(0.75)	(0.74)	(0.54)	(0.46)	(0.65)	(0.64)	(0.50)	(0.46)	(0.65)	(0.70)	(0.48)	(0.50)	(0.66)	(0.73)	
Elbow/ Lower Arm/ Hand	415 (0.83)	577 (1.21)	628 (1.32)	517 (0.86)	399 (0.73)	544 (0.90)	636 (1.05)	557 (0.81)	428 (0.73)	578 (0.95)	588 (0.98)	512 (0.72)	456 (0.71)	562 (0.92)	553 (0.91)	
Knee/ Lower Leg/ Foot	588 (1.18)	669 (1.40)	728 (1.53)	775 (1.29)	586 (1.07)	686 (1.14)	741 (1.22)	766 (1.12)	668 (1.15)	789 (1.29)	655 (1.09)	759 (1_07)	700 (1.10)	734 (1,20)	629 (1.04)	

							INDI	ANA			-				
		19	985			19	86			19	87			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
A+K	891	950	1028	1119	891	1026	1099	1147	919	1023	1012	1077	970	964	969
	(1.79)	(1.99)	(2.15)	(1.86)	(1.63)	(1.69)	(1.81)	(1.67)	(1.57)	(1.67)	(1.68)	(1.52)	(1.52)	(1.58)	(1.59)
Bleeding	1735	1892	1932	2251	1764	2044	2115	2303	1876	1978	1877	2050	1857	1782	1950
	(3.48)	(3.97)	(4.05)	(3.74)	(3.22)	(3.38)	(3.48)	(3.36)	(3.22)	(3.24)	(3.11)	(2.89)	(2.91)	(2.92)	(3.21)

•

.

Table B.4. Number and percent of drivers in all accidents with bleeding or serious (A+K) injuries across time periods (data for Figure 2.28).

•

							INDI	ANA			•				
		1	985			19	86			19	87			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
A+K	43	72	101	60	48	73	80	79	62	86	92	91	69	-110	84
	(6.84)	(10.70)	(13.65)	(8.45)	(7.04)	(9.57)	(10.04)	(9.04)	(7.71)	(10.32)	(11.26)	(8.96)	(8.16)	(11.54)	(9.89)
Bleeding	69	123	129	82	86	105	115	101	108	126	120	114	87	127	112
	(10.97)	(18.28)	(17.43)	(11.55)	(12.61)	(13.76)	(14.43)	(11.56)	(13.42)	(15.13)	(14.69)	(11.23)	(10.30)	(13.33)	(13,18)

Table B.5. Number and percent of drivers in rollover accidents with bleeding or serious $(\Lambda+K)$ injuries across time periods (data for Figure 2.31).

المحافظ المحافظ محافظ بالمحاف بمحافظ فالمتحا والمعود المراجع محافيات محروا المعرف المحاوي وحمور محافين وروب سارو

Table B.6.	Number and percent of drivers in non-rollover accidents with bleeding or
	serious (A+K) injuries across time periods (data for Figure 2.32).

							INDI	ANA			-				
		19	985			19	86			198	37			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
A+K	845	873	923	1047	839	948	1016	1063	855	931	918	984	899	852	822
	(1.72)	(1.87)	(1.98)	(1.77)	(1.59)	(1.63)	(1.73)	(1.61)	(1.52)	(1.58)	(1.58)	(1.43)	(1.46)	(1.45)	(1.50)
Bleeding	1661	1757	1794	2152	1675	1932	1993	2191	1762	1846	1754	1932	1766	1650	1834
	(3.40)	(3.76)	(3.85)	(3.64)	(3.17)	(3.32)	(3.39)	(3.32)	(3.14)	(3.13)	(3.01)	(2.82)	(2.86)	(2.80)	(3.12)

.

•

Table B.7. Number and percent of uninjured drivers in rollover and non-rollover accidents across time periods (data for Figure 2.33).

 \sim .

							INDI	ANA			-				
		1	985			19	86			19	87			1988	
Uninjured	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr~	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Non-Rollover	42487	39963	39704	50647	46298	50697	50825	57319	49222	51021	50839	60181	54153	51430	51033
Uninjured	(86.88)	(85.62)	(85.10)	(85.68)	(87.70)	(87.11)	(86.55)	(86.84)	(87.59)	(86.57)	(87.22)	(87.88)	(87.78)	(87.39)	(86.84)
Rollover	375	288	321	404	413	387	412	494	433	407	412	566	496	464	423
Uninjured	(59.62)	(42.79)	(43.38)	(56.90)	(60.56)	(50.72)	(51.69)	(56.52)	(53.79)	(48.86)	(50.43)	(55.76)	(58.70)	(48.69)	(49.76)

		1	985			19	86			19	87			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	- July-	Oct-	Jan-	Apr-	July-
Location	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	──Mar	Jun	Sept
Face	28	42	49	37	44	38	28	37	44	42	37	50	39	53	42
	(4.45)	(6.24)	(6.62)	(5.21)	(6.45)	(4.98)	(3.51)	(4.23)	(5.47)	(5.04)	(4.53)	(4.93)	(4.62)	(5.56)	(4.94)
Head	82	83	83	82	67	79	106	105	105	110	103	120	100	115	83
	(13.04)	(12.33)	(11.22)	(11.55)	(9.82)	(10.35)	(13.30)	(12.01)	(13.04)	(13.21)	(12.61)	(11.82)	(11.83)	(12.07)	(9.76)
Neck	18	29	34	27	26	32	34	30	36	39	41	60	34	45	46
	(2.86)	(4.31)	(4.59)	(3.80)	(3.81)	(4.19)	(4.28)	(3.43)	(4.47)	(4.68)	(5.02)	(5.92)	(4.02)	(4.72)	(5.41)
Back	29	39	40	27	17	33	36	39	37	41	26	41	30	55	36
	(4.61)	(5.79)	(5,41)	(3.80)	(2.49)	(4.33)	(4.52)	(4.46)	(4.60)	(4.92)	(3.18)	(4.04)	(3.55)	(5.77)	(4.24)
Chest/Abd.	15	17	34	16	19	26	31	32	39	29	34	33	25	37	39
Pelvis	(2.38)	(2.53)	(4.59)	(2.25)	(2.79)	(3.41)	(3.89)	(3.66)	(4.84)	(3.48)	(4.16)	(3.25)	(2.96)	(3.88)	(4.59)
Shoulder/	18	45	41	32	19	39	34	38	26	41	43	34	25	37	50
Upper Arm	(2.86)	(6.69)	(5.54)	(4.51)	(2.79)	(5.11)	(4.27)	(4.35)	(3.23)	(4.92)	(5.26)	(3.35)	(2.96)	(3.88)	(5.88)

Table B.8. Number and percent of drivers in rollover accidents with certain injury locations across time periods (data for Figures 2.34 and 2.36).

INDIANA

		1	985			19	86			19	87			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
Location	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Face	1197	1101	1082	1481	1171	1225	1248	1559	122 6	1092	1052	1413	1221	1046	1144
	(2.45)	(2.36)	(2.32)	(2.51)	(2.22)	(2.10)	(2.13)	(2.36)	(2.18)	(1.85)	(1.80)	(2.06)	(1.98)	(1.78)	(1.95)
Head	2021	1928	1936	2598	2040	2182	2171	2493	2154	2213	1823	2220	2195	1939	192 2
	(4.13)	(4.13)	(4.15)	(4.40)	(3.86)	(3.75)	(3.70)	(3.78)	(3.83)	(3.76)	(3.13)	(3.24)	(3.56)	(3.29)	(3.27)
Neck	896	1003	1086	1276	977	1284	1369	1462	1051	1454	1477	1544	1246	1389	1529
	(1.83)	(2.15)	(2.33)	(2.16)	(1.85)	(2.21)	(2.33)	(2.21)	(1.87)	(2.47)	(2.53)	(2.25)	(2.02)	(2.36)	(2.60)
Back	392	403	480	557	412	468	508	588	437	542	520	544	483	470	542
	(0.80)	(0.86)	(1.03)	(0.94)	(0.78)	(0.80)	(0.87)	(0.89)	(0.78)	(0.92)	(0.89)	(0.79)	(0.78)	(0.80)	(0.92)
Chest/Abd.	457	480	529	633	473	533	607	681	552	602	687	722	679	688	723
Pelvis	(0.93)	(1.03)	(1.13)	(1.07)	(0.90)	(0.92)	(1.03)	(1.03)	(0.98)	(1.02)	(1.18)	(1.05)	(1.10)	(1.17)	(1.23)
Shoulder/	205	310	310	290	231	349	354	303	240	356	381	306	291	363	395
Upper Arm	(0.42)	(0.66)	(0.66)	(0.49)	(0.44)	(0.60)	(0.60)	(0.46)	(0.43)	(0.60)	(0.65)	(0.45)	(0.47)	(0.62)	(0.67)
Elbow/ Lower Arm/ Hand	381 (0.78)	504 (1.08)	547 (1.17)	481 (0.81)	361 (0.68)	477 (0.82)	575 (0.98)	516 (0.78)	383 (0.68)	512 (0.87)	522 (0.90)	459 (0.67)	411 (0.67)	488 (0.83)	490 (0.83)
Knee/ Lower Leg/ Foot	564 (1.15)	641 (1.37)	689 (1.48)	744 (1.26)	560 (1.06)	648 (1.11)	704 (1.20)	728 (1.10)	638 (1.14)	753 (1.28)	626 (1.07)	732 (1.07)	672 (1.09)	689 (1.17)	590 (1.00)

Table B.9. Number and percent of drivers in non-rollover accidents with certain injury locations across time periods (data for Figures 2.35 and 2.37).

INDIANA

Table B.10. Number and percent of drivers in head-on accidents with bleeding or serious (A+K) injuries across time periods (data for Figure 2.38).

							INDIA	NA							
		1	985			19	86			198	17			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
A+K	207	199	208	243	171	203	204	232	205	176	179	209	247	193	204
	(5.13)	(6.50)	(7.26)	(5.31)	(4.63)	(6.14)	(6.07)	(5.34)	(5.39)	(5.50)	(5.54)	(4.49)	(6.09)	(6.07)	(6.25)
Bleeding	380	365	343	476	318	339	366	407	376	303	300	361	356	288	342
	(9.41)	(11.92)	(11.98)	(10.39)	(8.61)	(10.25)	(10.90)	(9.37)	(9.88)	(9.48)	(9.29)	(7.75)	(8.76)	(9.05)	(10.47)

.

.

							INDI	ANA							
		1	985	•		19	86			19	87			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
A+K	670	725	787	846	706	788	871	891	683	819	811	847	709	743	736
	(1.50)	(1.67)	(1.80)	(1.56)	(1.48)	(1.46)	(1.61)	(1.48)	(1.33)	(1.50)	(1.50)	(1.35)	(1.26)	(1.36)	(1.35)
Bleeding	1330	1484	1539	1734	1418	1658	1697	1852	1456	1637	1539	1649	1469	1441	1572
	(2.97)	(3.40)	(3.52)	(3.20)	(2.96)	(3.09)	(3.13)	(3.08)	(2.85)	(3.00)	(2.86)	(2.63)	(2.60)	(2.64)	(2.89)

Table B.11. Number and percent of drivers in non-head-on accidents with bleeding or serious (A+K) injuries across time periods (data for Pigure 2.39).

 \sim .(

Table B.12. Number and percent of uninjured drivers in head-on and non-head-on accidents across time periods (data for Figure 2.40).

.

		1	985			19	86			19	87			1988	
Uninjured	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Non-Head-On	39252	37509	37401	46791	42058	46814	46954	52412	44944	47177	47042	54961	49784	47725	47384
Uninjured	(87.63)	(86.06)	(85.45)	(86.30)	(87.93)	(87.23)	(86.74)	(87.05)	(87.89)	(86.48)	(87.27)	(87.82)	(88.10)	(87.32)	(87.01)
Head-On	2978	2164	1986	3380	2795	2414	2388	3218	2779	2351	2371	3655	2982	2349	2308
Uninjured	(73.75)	(70.67)	(69.39)	(73.78) [.]	(75.68)	(73.02)	(71.13)	(74.08)	(73.02)	(73.56)	(73.38)	(78.48)	(73.41)	(73.80)	(70.65)

INDIANA

		1	985			19	86			19	87			1988	
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
Location	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Face	308	249	209	362	265	261	272	335	302	214	208	277	267	212	236
	(7.63)	(8.13)	(7.30)	(7.90)	(7.18)	(7.89)	(8.10)	(7.71)	(7.93)	(6.70)	(6.44)	(5.95)	(6.57)	(6.66)	(7.22)
Head	339 (8.40)	259 (8.46)	282 (9.85)	357 (7.79)	254 (6.88)	260 (7.86)	300 (8.94)	297 (6.84)	301 (7.91)	256 (8.01)	235 (7.27)	289 (6.21)	<u> </u>	238 (7.48)	247 (7.56)
Neck	79	45	64	80	71	57	63	90	69	69	61	91	95	65	83
	(1.96)	(1.47)	(2.24)	(1.75)	(1.92)	(1.72)	(1.88)	(2.07)	(1.81)	(2.16)	(1.89)	(1.95)	(2.34)	(2.04)	(2.54)
Back	31	26	32	39	38	28	26	41	38	18	31	30	30	26	33
	(0.77)	(0.85)	(1.12)	(0.85)	(1.03)	(0.85)	(0.77)	(0.94)	(1.00)	(0.56)	(0.96)	(0.64)	(0.74)	(0.82)	(1.01)
Chest/Abd.	76	91	71	111	75	77	98	116	101	68	114	113	134	96	134
Pelvis	(1.88)	(2.97)	(2.48)	(2.42)	(2.03)	(2.33)	(2.92)	(2.67)	(2.65)	(2.13)	(3.53)	(2.43)	(3.30)	(3.02)	(4.10)
Shoulder/	19	33	31	15	25	35	27	29	27	36	33	22	32	29	42
Upper Arm	(0.47)	(1.08)	(1.08)	(0.33)	(0.68)	(1.06)	(0.80)	(0.67)	(0.71)	(1.13)	(1.02)	(0.47)	(0.79)	(0.91)	(1.27)
Elbow/ Lower Arm/ Hand	60 (1.49)	68 (2.22)	61 (2.13)	70 (1.53)	43 (1.16)	51 (1.54)	61 (1.82)	66 (1.52)	49 (1.29)	49 (1.53)	56 (1.73)	57 (1.22)	58 (1.43)	40 (1.26)	68 (2.08)
Knee/ Lower Leg/ Foot	103 (2.55)	80 (2.61)	94 (3.28)	116 (2.53)	100 (2.71)	83 (2.51)	82 (2.44)	107 (2.46)	99 (2.60)	81 (2.53)	73 (2.26)	80 (1.72)	112 (2.76)	80 (2.51)	64 (1.96)

Table B.13. Number and percent of drivers in head-on accidents with certain injury locations across time periods (data for Figures 2.41 and 2.43).

INDIANA

Table B.14.	Number and percent of drivers in non-head-on accidents with certain
	injury locations across time periods (data for Figures 2.42 and 2.44).
	· · · · · · · · · · · · · · · · · · ·

		1	985		1986					198	37	1988			
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
Location	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	'Sept	Dec	Mar	Jun	Sept
Face	909	883	903	1141	936	988	983	1241	936	906	861	1171	977	872	930
	(2.03)	(2.03)	(2.06)	(2.10)	(1.96)	(1.84)	(1.82)	(2.06)	(1.83)	(1.66)	(1.60)	(1.87)	(1.73)	(1.60)	(1.71)
Head	1742	1718	1714	2294	1828	1957	1940	2262	1929	2042	1660	2005	1968	1774	1728
	(3.89)	(3.94)	(3.92)	(4.23)	(3.82)	(3.65)	(3.58)	(3.76)	(3.77)	(3.74)	(3.08)	(3.20)	(3.48)	(3.25)	(3.17)
Neck	825	972	1043	1207	914	1242	1328	1384	1007	1404	1438	1496	1171	1354	1481
	(1.84)	(2.23)	(2.38)	(2.23)	(1.91)	(2.31)	(2.45)	(2.30)	(1.97)	(2.57)	(2.67)	(2.39)	(2.07)	(2.48)	(2.72)
Back	383	409	477	526	384	464	510	576	428	559	506	544	479	485	533
	(0.86)	(0.94)	(1.09)	(0.97)	(0.80)	(0.86)	(0.94)	(0.96)	(0.84)	(1.02)	(0.94)	(0.87)	(0.85)	(0.89)	(0.98)
Chest/Abd.	387	397	481	527	412	479	533	591	480	553	598	636	570	623	616
Pelvis	(0.86)	(0.91)	(1.10)	(0.97)	(0.86)	(0.89)	(0.98)	(0.98)	(0.94)	(1.01)	(1.11)	(1.02)	(1.01)	(1.14)	(1.13)
Shoulder/	200	309	309	297	218	343	349	306	230	351	378	313	282	358	394
Upper Arm	(0.45)	(0.71)	(0.71)	(0.55)	(0.46)	(0.64)	(0.64)	(0.51)	(0.45)	(0.64)	(0.70)	(0.50)	(0.50)	(0.65)	(0.72)
Elbow/ Lower Arm/ Hand	349 (0.78)	483 (1.11)	544 (1.24)	424 (0.78)	348 (0.73)	472 (0.88)	550 (1.02)	474 (0.79)	365 (0.71)	512 (0.94)	512 (0.95)	441 (0.70)	385 (0.68)	499 (0.91)	475 (0.87)
Knee/ Lower Leg/ Foot	477 (1.06)	576 (1.32)	618 (1.41)	648 (1.20)	477 (1.00)	583 (1.09)	648 (1.20)	633 (1.05)	553 (1.08)	694 (1.27)	573 (1.06)	670 (1.07)	580 (1.03)	642 (1.17)	551 (1.01)

		1	985		1986					19	87	1988			
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
A+K	316	401	416	440	377	429	439	455	337	417	412	456	399	391	415
	(4.05)	(5.63)	(5.92)	(4.21)	(4.03)	(5.03)	(5.24)	(3.90)	(3.66)	(4.80)	(4.99)	(3.69)	(3.70)	(4.56)	(5.09)
Bleeding	641	695	706	823	655	753	776	837	699	696	663	817	721	668	725
	(8.21)	(9.75)	(10.05)	(7.86)	(7.01)	(8.83)	(9.28)	(7.17)	(7.59)	(8,00)	(8,03)	(6,62)	(6,69)	(7.80)	(8.89)

Table B.15. Number and percent of drivers in single vehicle accidents with bleeding and serious (A+K) injuries across time periods (data for Figure 2.45).

INDIANA

 \wedge

 \sim .

and a second second

							INDIANA						\smile	1		
		1985				1986				1987				1988		
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Get-	Jan-	Apr-	July-	
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	
∧+K	575	549	612	679	514	597	660	692	582	606	600	621	571	573	554	
	(1.37)	(1.35)	(1.51)	(1.36)	(1.13)	(1.15)	(1.26)	(1.22)	(1.19)	(1.16)	(1.15)	(1.06)	(1.08)	(1.09)	(1.05)	
Bleeding	1094	1197	1226	1428	1109	1291	1339	1466	1177	1282	1214	1233	1136	1114	1225	
	(2.60)	(2.95)	(3.01)	(2.87)	(2.44)	(2.49)	(2.55)	(2.58)	(2.40)	(2.45)	(2.33)	(2.10)	(2.14)	(2.12)	(2.33)	

.

Table B.16. Number and percent of drivers in multi-vehicle accidents with bleeding or serious (A+K) injuries across time periods (data for Figure 2.46).

	INDIANA															
		1	985		1986				1987					1988		
Crash Type	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	
	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	
Multi-Vehicle	37097	35290	35247	43255	40606	46006	46192	50143	43625	45966	46086	52254	47378	46443	46479	
Uninjured	(88.32)	(87.06)	(86.61)	(87.02)	(89.35)	(88.67)	(88.06)	(88.21)	(88.97)	(87.85)	(88.58)	(89.11)	(89.27)	(88.55)	(88.37)	
Single Vehicle	e 6016	5239	5068	8117	7400	6500	6322	9273	7252	6684	6331	9956	8562	6647	6099	
Uninjured	(77.02)	(73.52)	(72.12)	(77.48)	(79.22)	(76.21)	(75.59)	(79.43)	(78.74)	(76.87)	(76.70)	(80.66)	(79.45)	(77.62)	(74.78)	

Table B.17.Number and percent of uninjured drivers in single and multi-vehicleaccidents across time periods (data for Figure 2.47).

Table B.18. Number and percent of drivers in single vehicle accidents with certaininjury locations across time periods (data for Figures 2.48 and 2.50).

	INDIANA														
		1	985			1986				19	37 -	1988			
Injury	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
Location	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Face	471	474	451	624	499	526	493	673	526	446	437	615	543	457	478
	(6.03)	(6.65)	(6.42)	(5.96)	(5.34)	(6.17)	(5.89)	(5.76)	(5.71)	(5.13)	(5.29)	(4.98)	(5.04)	(5.34)	(5.86)
Head	596	513	538	749	615	582	588	643	598	589	522	667	665	503	513
	(7.63)	(7.20)	(7.66)	(7.15)	(6.58)	(6.82)	(7.03)	(5.51)	(6.49)	(6.77)	(6.32)	(5.40)	(6.17)	(5.87)	(6.29)
Neck	120	124	113	165	135	127	128	197	133	157	153	197	194	142	180
	(1.54)	(1.74)	(1.61)	(1.58)	(1.45)	(1.49)	(1.53)	(1.69)	(1.44)	(1.81)	(1.85)	(1.60)	(1.80)	(1.66)	(2.21)
Back	85	95	104	120	103	86	105	134	112	111	98	136	122	106	111
	(1.09)	(1.33)	(1.48)	(1.15)	(1.10)	(1.01)	(1.26)	(1.15)	(1.22)	(1.28)	(1.19)	(1.10)	(1.13)	(1.24)	(1.36)
Chest/Abd.	130	140	168	163	133	137	154	205	156	155	164	185	175	148	181
Pelvis	(1.66)	(1.96)	(2.39)	(1.56)	(1.42)	(1.61)	(1.84)	(1.76)	(1.69)	(1.78)	(1.99)	(1.50)	(1.62)	(1.73)	(2.22)
Shoulder/	62	108	112	82	84	127	97	98	76	100	110	107	95	107	138
Upper Arm	(0.79)	(1.52)	(1.59)	(0.78)	(0.90)	(1.49)	(1.16)	(0.84)	(0.83)	(1.15)	(1.33)	(0.87)	(0.88)	(1.25)	(1.69)

		1	985		1986					19	87	1988			
Injury	Jan-	Apr-	July-	Oct :	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-	Oct-	Jan-	Apr-	July-
Location	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept
Face	762	682	688	906	722	745	789	930	748	693	655	852	719	644	709
	(1.81)	(1.68)	(1.69)	(1.82)	(1.59)	(1.44)	(1.50)	(1.64)	(1.53)	(1.32)	(1.26)	(1.45)	(1.35)	(1.23)	(1.35)
Head	1515	1501	1490	1945	1495	1685	1692	1963	1666	1742	1408	1678	1634	1554	1498
	(3.61)	(3.70)	(3.66)	(3.91)	(3.29)	(3.25)	(3.23)	(3.45)	(3.40)	(3.33)	(2.71)	(2.86)	(3.08)	(2.96)	(2.85)
Neck	796	912	1009	1145	868	1191	1276	1297	955	1338	1368	1410	1086	1293	1397
	(1.90)	(2.25)	(2.48)	(2.30)	(1.91)	(2.30)	(2.43)	(2.28)	(1.95)	(2.56)	(2.63)	(2.40)	(2.05)	(2.47)	(2.66)
Back	338	351	419	467	327	415	441	494	363	475	449	451	392	423	467
	(0.80)	(0.87)	(1.03)	(0.94)	(0.72)	(0.80)	(0.84)	(0.87)	(0.74)	(0.91)	(0.86)	(0.77)	(0.74)	(0.81)	(0.89)
Chest/Abd.	343	358	399	488	363	425	486	512	437	479	557	574	535	577	583
Pelvis	(0.82)	(0.88)	(0.98)	(0.98)	(0.80)	(0.82)	(0.93)	(0.90)	(0.89)	(0.92)	(1.07)	(0.98)	(1.01)	(1.10)	(1.11)
Shoulder/	161	248	240	240	166	263	291	245	190	299	315	234	223	294	307
Upper Arm	(0.38)	(0.61)	(0.59)	(0.48)	(0.37)	(0.51)	(0.55)	(0.43)	(0.39)	(0.57)	(0.61)	(0.40)	(0.42)	(0.56)	(0.58)
Elbow/ Lower Arm/ Hand	286 (0.68)	389 (0.96)	412 (1.01)	335 (0.67)	259 (0.57)	368 (0.71)	416 (0.79)	391 (0.69)	303 (0.62)	403 (0.77)	403 (0.77)	316 (0.54)	308 (0.58)	372 (0.71)	370 (0.70)
Knee/ Lowe r Leg / Foot	462 (1.10)	525 (1.30)	563 (1.38)	597 (1.20)	453 (1.00)	523 (1.01)	577 (1.10)	589 (1.04)	520 (1.06)	629 (1.20)	505 (0.97)	(1.03)	525 (0.99)	.556 (1.06)	486 (0.92)

Table B.19. Number and percent of drivers in multi-vehicle accidents with certain injury locations across time periods (data for Figures 2.49 and 2.51).

INDIANA